

22 de julho a 02 de agosto de 2019

Inteligência Artificial utilizando *Deep Learning* e Aplicações em Física

Márcio Portes de Albuquerque (CBPF)

Clécio R. De Bom (CBPF/CEFET-RJ)

Elisangela L. Faria (CBPF)

Uma introdução conceitual de aprendizado de máquina e uma abordagem prática em aplicações de redes neurais profundas com foco em aplicações cientificas e tecnológicas.

22 de julho a 02 de agosto de 2019

Para um melhor aproveitamento do conteúdo ministrado, recomendamos à audiência que mantenha os aparelhos eletrônicos (celulares, laptops)

Desligados ou mudos durante as aulas.

Comissão Organizadora XII Escola do CBPF

22 de julho a 02 de agosto de 2019

login: XII-Escola-CBPF

senha: escolacbpf2019

Comissão Organizadora XII Escola do CBPF

CELEBRANDO

O PASSADO

REALIZANDO

O PRESENTE

CONSTRUINDO

O FUTURO

https://portal.cbpf.br/pt-br/livros/cesar-lattes-arrastado-pela-historia

Ministry of Science, Technology, **Innovations and Communications**

History

Founded in 1949 (70 years in 2019) Contributed to the creation of groups of excellence and Research Institutes

Our mission

A história do CBPF está permeada de iniciativas, que estão na base da criação de instituições que formam hoje a espinha dorsal da Ciência no Brasil

s and develop its preparing human cal development.

ram (CAPES 7) most traditional Physics in Brazil) Instrumentation

J.L. Lopes

G. Beck

J. Tiomno

hnovation

Innovation and NIT-Rio/MCTIC

HEP-Network (CERN, FERMILAB), CLAF, TWAS, CNRS, CONACYT, NSF, DAAD, SFI Projetos: Auger/Lattes, CTA and Dark Energy Survey

Mission of Research Institutes

Research

Push forward the frontiers of knowledge

Innovation

Develop new, cutting-edge technologies

Education

Train scientists and engineers of tomorrow

Outreach

Promote Science in Society

Mission of Research Institutes

Research

Push forward the frontiers of knowledge

Innovation

Develop new, cutting-edge technologies

Education

Train scientists and engineers of tomorrow

Outreach

Promote Science in Society

À Rio, un graffiti pour la science

16.00.2018 Del Olivrer Futurn

Le 8 juin, à Rio de Janeiro, le Centre brésilien de recherches physiques à inauguré un graffici couvrant 240 mètres carrés d'un mur entièrement dédié aux sciences, aux technologies et à l'innovation. Unique dans le monde par sa taille et sa thématique, cette œuvre d'art urbain, qui s'inscrit dans le cadre de la promotion de la science au Brésil, invite la jeunesse du pays à embrasser une carrière scientifique.

Retrouvez toutes les informations our ce projet soutenu par le CNRS our le site : http://www.science-graffit.copf.pr/# 🦸

#grafitedaciencia

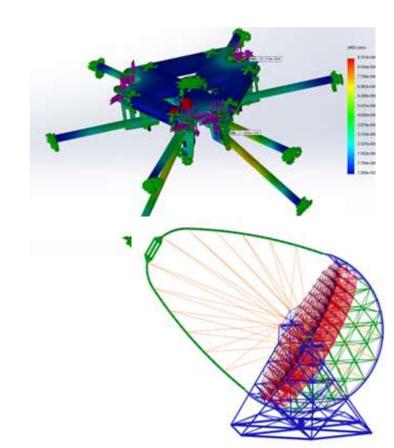
CBPF – R&D Areas

Experimental, Theoretical and Applied Physics

- High Energy and Astroparticle Physics
- Condensed Matter & Materials
- Nanoscience and Nanotechnology
- Biophysics & Biomaterials
- Statistical Mechanics and Complex Systems
- Quantum information
- Cosmology and Gravitation
- Signal Processing and Computing for Science
- Scientific and Technological Instrumentation

International Collaboration - Cherenkov Telescope Array

Exploring the Universe at the Highest Energies



Laboratórios

LABNANO/SisNANO

Laboratórios

Formação Científica

Pós-graduação

Doutorado e Mestrado em Física

Mestrado em Instrumentação Científica

Publico alvo: físicos e engenhe

 Formação de recursos humano desenvolvimento tecnológico

O Programa de Pós-Graduação do CBPF completou, em 2012, seu 50º aniversário, um marco da história da Física no Brasil

Extensão

(CBPF – programa de excelência)
CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior)

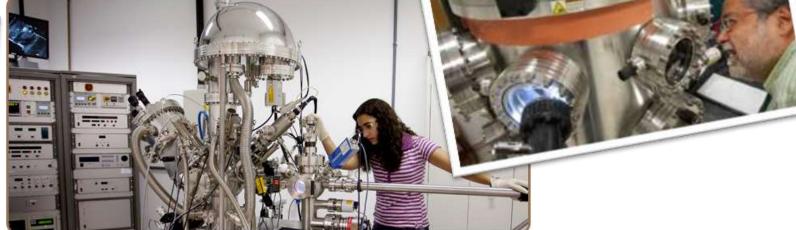
CBPF in Numbers

Headquarters of the National High Energy Physics Network (RENAFAE)

Headquarters of National Science and Technology
 Institute for Complex Systems and Quantum Information

 Headquarters of Rio de Janeiro Nanotechnology Network (LABNANO/CBPF is the main facility)

Strategic Lab under SisNANO network



CBPF is the technical and operational segment of the Rio de Janeiro NREN (Advanced Research and Educ. Network)- support for 160 research, academic and governmental Institutions.

Rede de Ensino e Pesquisa (CBPF)

Acadêmicos 34 Prefeitura 31 Metro 2 Supervia

Total: 167

≈ 400 Km de Fibras Ópticas

CBPF & Industry

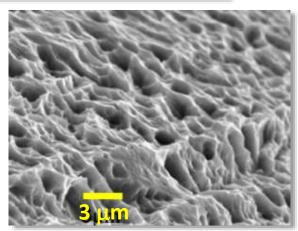
- NMR for Petrophysics;
- Quantitative Imaging techniques for characterization of high-resolution images in geological reservoirs;
- Rock plugs with controlled porosity
- Nanotechnology for O&G industry
- New materials and techniques for medical implants
- Magnetic Resonance at the micro and nanoscale
- Material Science, Nanotechnology and Magnetics Devices
- Cherenkov Telescope Array

Group of Surfaces and Nanostructures

Biocompatible Coatings

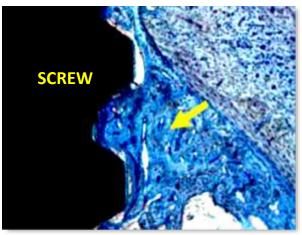
- Instrument for Crystalline and biocompatible nanometer coatings of Calcium-Phosphates produced at room temperatures.
- Pre-clinical studies in dogs and rabbits indicated high adhesion and proliferation of bone tissue around titanium implants
- Improves clinical behaviour and push up values to medical metallic implants, saving loading time and solving rejections

Commercial titanium screw with nanosized hydroxyapatite coating (100 nm)



Preclinical tests
with strong
adhesion and bone
growth (in blue) to
screw coated
HAPnano (black)

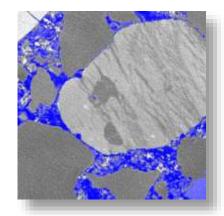
Metal implant surface with micrometric roughness for mechanical bonding and homogeneous coating



Image/Signal: Emerging techniques

Exploring multimodal imaging protocols in association with powerful imaging processing techniques

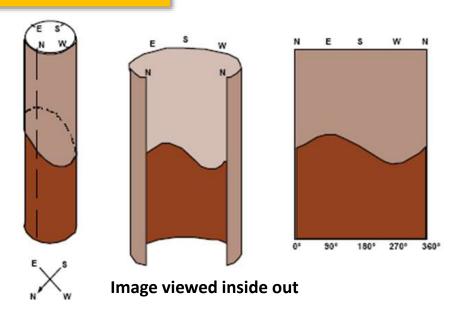
- X rays quantitative imaging
 - Dual Energy / Multispectral μCT / Synchrotron based techniques
- Signal and image processing
 - Advanced approaches for enhancement and segmentation
 - Machine learning / Deep Learning
- Complexity and statistical physics
 - Porous media characterization through information theory and fractal geometry

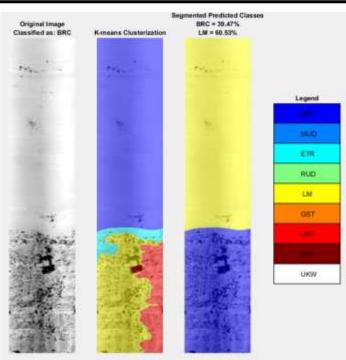


ssification

Characterization of Borehole Profile

Clustering and facies classification texture segmentation





Instrumentos avançados & tecnologias de medidas

óptica aplicada

computação científica

eletrônica

mecânica

Laboratório de Redes e Sistemas (LARS)

36x <u>RTX</u> 2080Ti 6x Quadro K6000 6x 1080Ti 13x 1050Ti

- 32 CPU cores, 128 GB RAM (expansível até 1TB),
- 26112 CUDA cores, 84 Teraflops, 66GB VRAM,
- 4xWaterCoolers completo silêncio,
- 1632 Tmus unid. de texturas e 528 ROps unid. para renderização
- 4TB HD/backup Enterprise e 500 GB SSD/OS, 2 fontes 1600W

Laboratório de Redes e Sistemas (LARS)

Programação Paralela

GPGPU – General Purpose GPU

(processador da placa de vídeo)

As GPU foram originalmente usadas para renderização de imagens em jogos 3D.

Essa capacidade de processamento está sendo aproveitada de forma mais ampla para acelerar o processamento computacional em áreas como pesquisa científica, processamento de sinais/imagens, algebra linear, estatística, reconstrução 3D, modelagem financeira, exploração de petróleo e gás....

Laboratório de Redes e Sistemas (LARS)

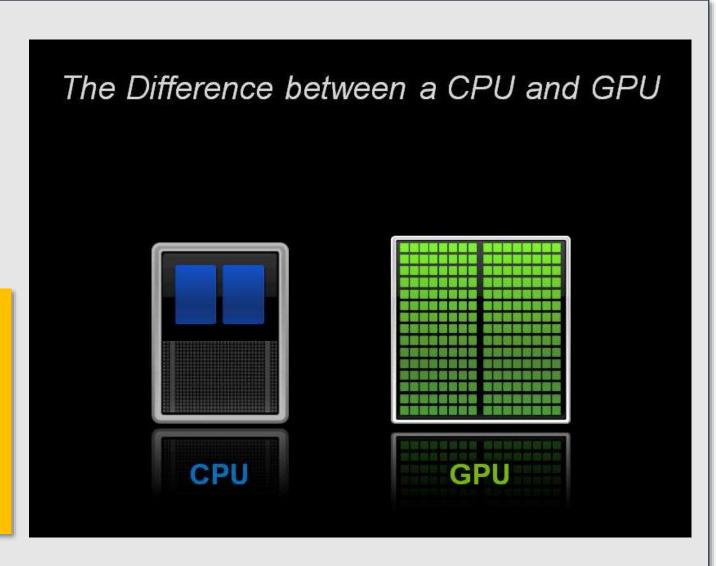
Programação Paralela

GPU – Unidade de Processamento Gráfico

(processador da placa de vídeo)

A GPU é responsável pelos cálculos de processamento de vetores, texturas, projeções das imagens em um sistema de vídeo do computador.

Libera a CPU para fazer outras tarefas (de outra complexidade).

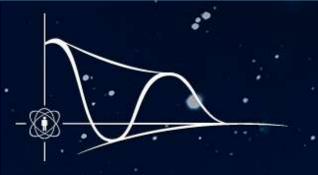


P&D: Proc. de Imagens & Inteligência Artificial

- Processamento de sinais e imagens
- Inteligência artificial
- Instrumentação cientifica / tecnológica
- Simulações

André Manuel Luciana Juliana Patrick Marcos Paulo Athos Pedro

Coordenação de Desenvolvimento Tecnológico



22 de julho a 02 de agosto de 2019

Ementa - Roteiro

AULA 1: Apresentações iniciais, Redes Neurais Artificiais, Aprendizado de máquina, Algoritmos/Termos; Redes Perceptron de Várias Camadas.

AULA 2: Rede Neural Convolucional: Resnet e Inception.

AULA 3: Autoencoders e aprendizagem não supervisionada.

- Redes Geradoras Adversariais (GAN).

AULA 4: Redes Neurais Convolucionais Baseadas em Região (R-CNN).

AULA 5: Redes Neurais Bayesianas

Pré-requisitos:

22 de julho a 02 de agosto de 2019

You will need:

- → Python (anaconda3)
- \rightarrow Keras
- → Tensorflow
- → matplotlib
- \rightarrow numpy

For the examples you will also need:

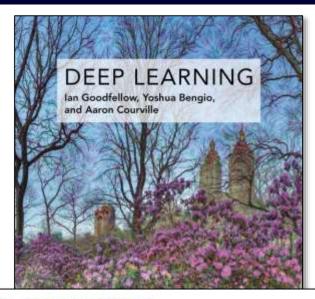
→ astropy (Aulas Clécio)

Google Colab (on-line)

We will have several examples in Google Colabs or in Python notebooks. The examples and datasets required can be downloaded in

clearnightsrthebest.com

Bibliografia



- Cobb, A. D., Roberts, S. J., Gal, Y., "Loss-Calibrated Approximate Inference in Bayesian Neural Networks", 2018 arXiv:1805.03901
- Goodfellow, I., et al., "Deep Learning", 2016. MIT press. http://www.deeplearningbook.org.

- CBPF
- Hezaveh, Y. D., et al. "Fast automated analysis of strong gravitational lenses with convolutional neural networks." Nature 548.7669 (2017): 555.
- Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada.
- LeCun, Y., Bengio, Y. and Hinton, G., "Deep learning." Nature 521.7553 (2015): 436.

LETTER

doi:10.1038/nature23463

Fast automated analysis of strong gravitational lenses with convolutional neural networks

Yashar D. Hezaveh^{1,2}*, Laurence Perreault Levasseur^{1,2}* & Philip J. Marshall^{1,2}

Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the 'gravitational lens') has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in

deep learning, convolutional neural networks (Methods) have been shown to excel at many image recognition and classification tasks⁶. This makes them a particularly promising tool for the analysis of gravitational lenses. Recently, these networks have been used to search for gravitational lenses in large volumes of telescope data^{7–9} and to simulate weakly lensed galaxy images¹⁰. Here we show that these networks can also be used for data analysis and parameter estimation.

We train four networks, Inception-v4¹¹, AlexNet¹², OverFeat¹³ and a network of our own design, to analyse strongly lensed systems, by

- Schawinski, K., et al., "Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit", Monthly Notices of the Royal Astronomical Society: Letters, Volume 467, Issue 1, p.L110-L114.
- Wu, J., "Introduction to convolutional neural networks." National Key Lab for Novel Software Technology, Nanjing University. China (2017).

- É o termo de TIC que trata sobre a manipulação de grandes quantidades de dados que precisam ser processados, transferidos e/ou armazenados.
- O conceito de "grande" é sempre relativo. Um conjunto de dados que é considerado grande hoje quase certamente será considerado pequeno amanhã.
- Big data representa a condição no qual existem mais dados dos que as técnicas tradicionais podem processar.
- Alguns projetos definem que o "Big data" não é uma função da quantidade de dados, mas da sua complexidade. Consequentemente, é o grau de relacionamento no conjunto de dados que define o que é Big Data.
- Outra definição → Big-Data e os 3Vs: Volume, Velocidade e Variedade;
 +V (4Vs): Veracidade, (confiança e incerteza).

Big Data

• É o termo de TIC que trata sobre a manipulação de grandes quantidades de dados que

Technology Review https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/

Data Science

- Estatística é a ciência capaz de fazer inferências e tomar decisões onde existe alguma incerteza. É uma ferramenta cada vez mais relevante devido à ampla quantidade e disponibilidade de dados e dos recursos computacionais atuais.
- A necessidade de processar e gerenciar grandes quantidades de dados tornou-se uma característica fundamental das ferramentas estatísticas modernas e é comumente chamada de Ciência de Dados.

Inteligência

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence.

New York: Cambridge University Press.

Qualidade Mental

- Aprender a partir de alguma experiência anterior
- Resolver problemas
- Se adaptar a situações novas

Inteligências Múltiplas (R. Sternberg – psicólogo)

Analítica:

Habilidade para pensar de forma abstrata e resolver problemas Criativa/Sintética:

Habilidade se adaptar a alguma nova situação ou gerar novas ideias Prática:

Habilidade contextual ou de adaptação as condições do ambiente

Emocional:

Habilidade de perceber, entender, gerenciar e usar emoções em suas interações com os outros

Inteligência

Inteligências Múltiplas (R. Sternberg – psicólogo)

Analítica:

Habilidade para pensar de forma abstrata e resolver problemas Criativa/Sintética:

Fluída:

Habilidade abstração → <u>capacidade de raciocínio</u>

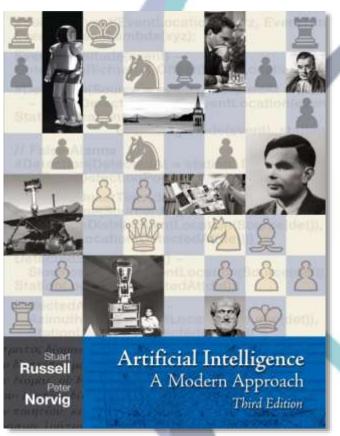
Habilidade contextual ou de adaptação as condições do ambiente

Cristalizada:

Habilidade em acumular conhecimento, habilidades verbais Habilidade de perceber, entender, gerenciar e usar emoções em suas interações com os outros

IA – Inteligência Artificial

• Inteligência Artificial (IA) é o termo frequentemente usado para descrever máquinas ou computadores que imitam funções cognitivas de seres humanos, que estão associados a mente humana, como "aprendizado" ou a capacidade de "resolver problemas".



1996

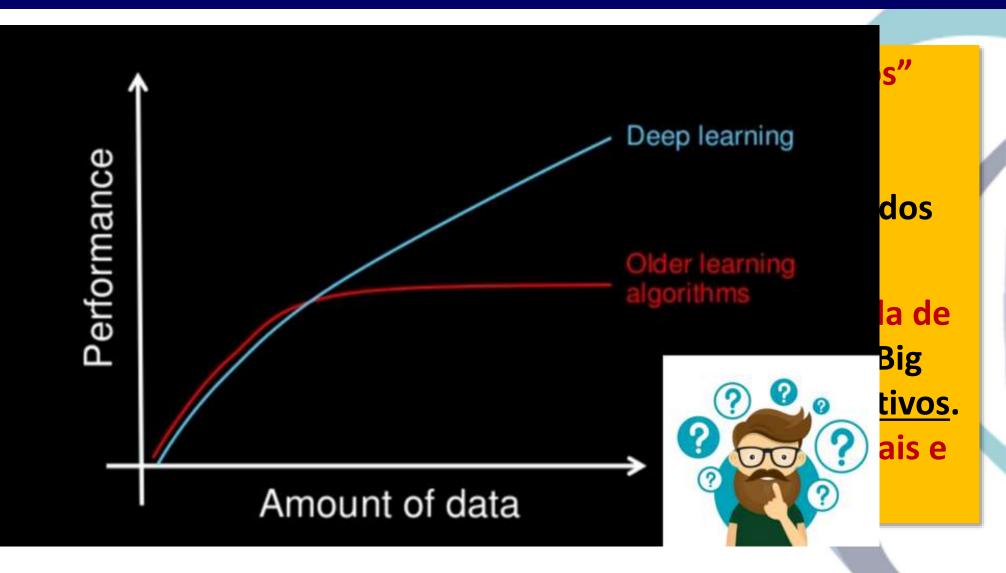
http://aima.cs.berkeley.edu/

A convergência entre Big Data e IA

- Em vez de depender de dados representativos, os "Cientistas de Dados" têm atuados cada vez mais a partir dos dados reais. É devido a essa característica que muitas instituições passaram de uma abordagem baseada em hipóteses para uma abordagem/decisão baseada em "dados reais".
- O processamento de grande quantidades de dados auxiliam na tomada de decisão das instituições. A análise de grandes quantidades de dados (Big Data) incentiva a descoberta de padrões por meio de algoritmos iterativos. Como resultado, as instituições podem rapidamente, experimentar mais e aprender mais.

A convergência entre Big Data e IA

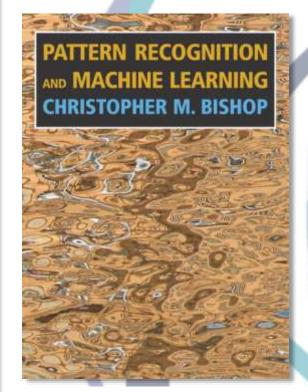
- Em vez de têm atuado característi baseada er reais".
- O processa decisão das Data) incer Como resu aprender n



https://sloanreview.mit.edu/article/how-big-data-isempowering-ai-and-machine-learning-at-scale/

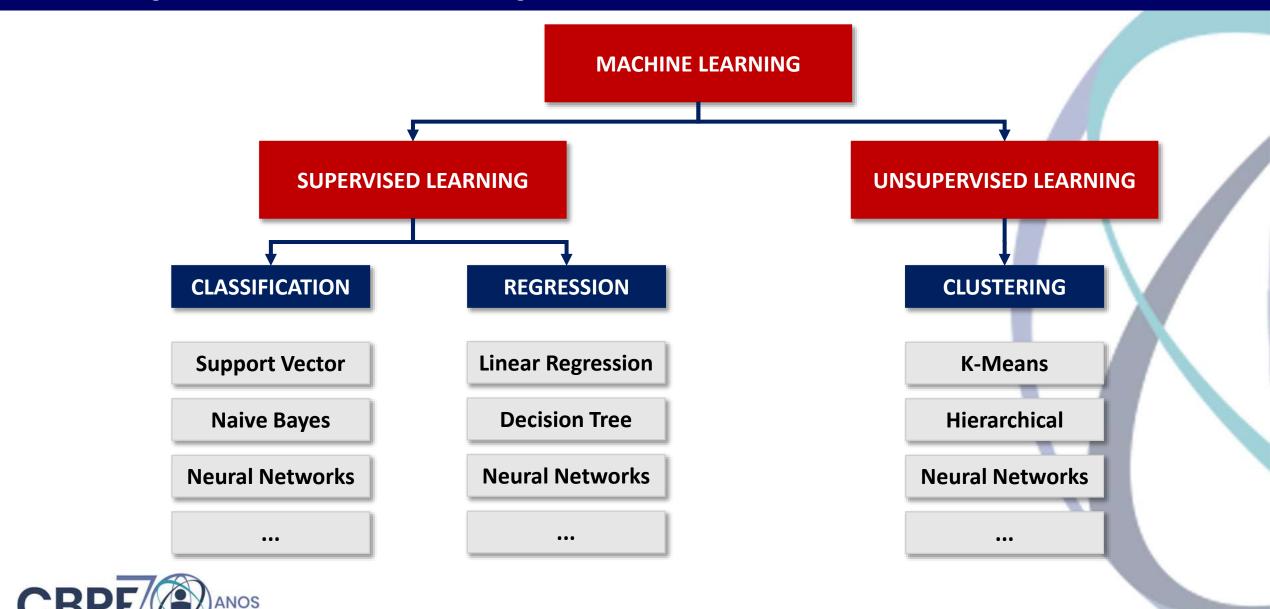
Aprendizado de Máquina

- Machine learning (ML): estudo científico de algoritmos e modelos estatísticos por meio de sistemas computacionais para executar uma tarefa específica de maneira eficaz, sem usar instruções explícitas, confiando em padrões e inferências. É uma área da IA.
- Algoritmos de ML constroem um modelo matemático baseado em um conjunto amostra, conhecido como "dados de treinamento", para fazer previsões ou permitir decisões sem ser explicitamente programado para executar a tarefa.

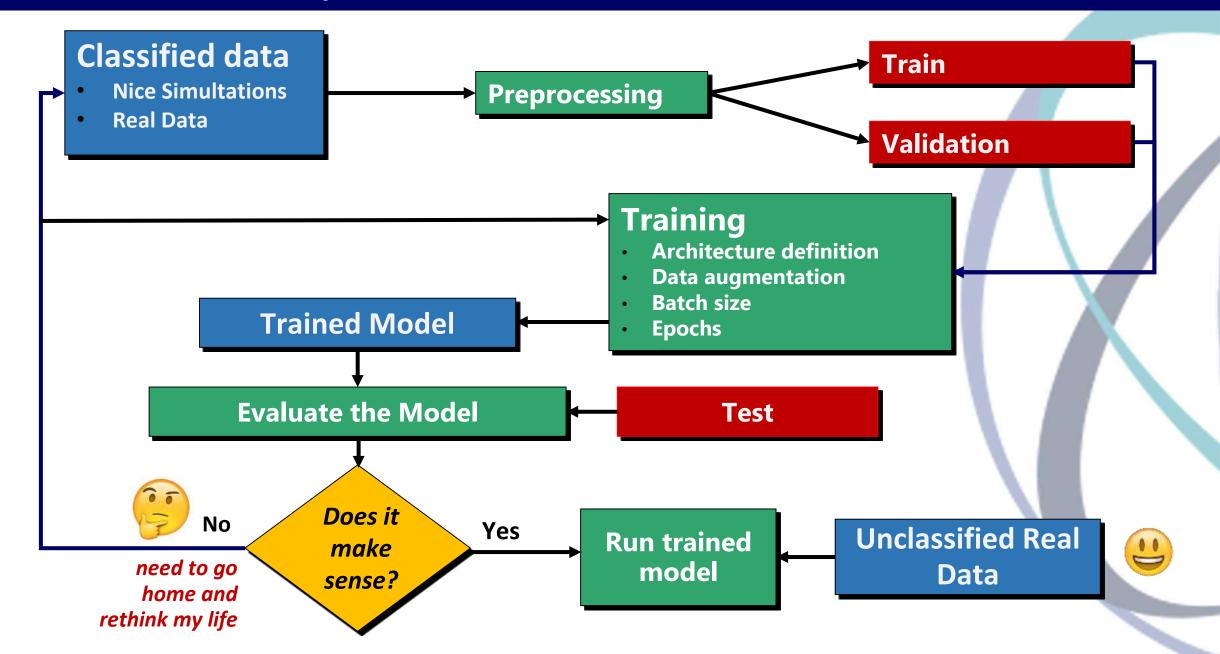


https://www.springer.com/gp/book/9780387310732

ML: Supervised & Unsupervised

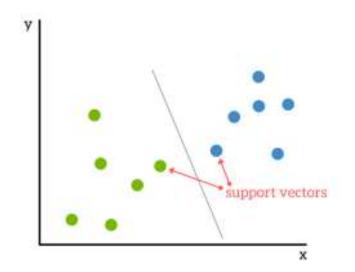


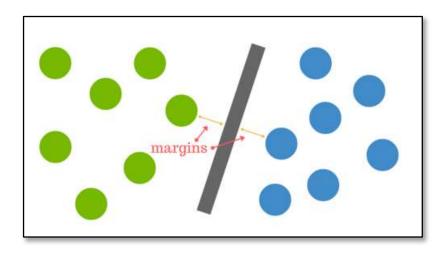
ML: Workflow Supervised

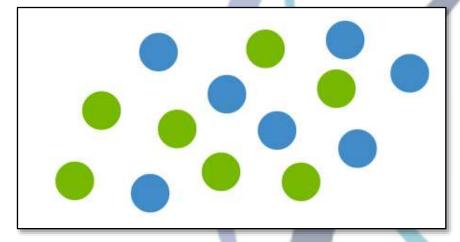


ML: Support Vector Machines - SVM

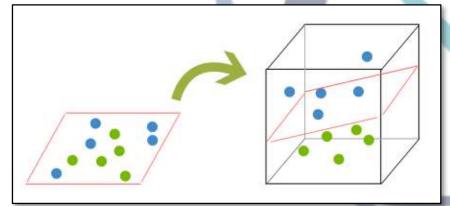
SVMs are based on the idea of finding a hyperplane that best divides a dataset into two classes.





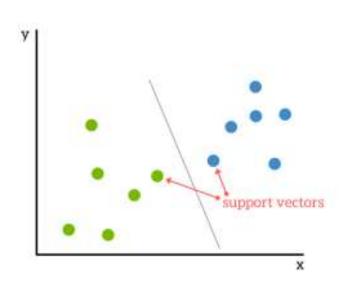


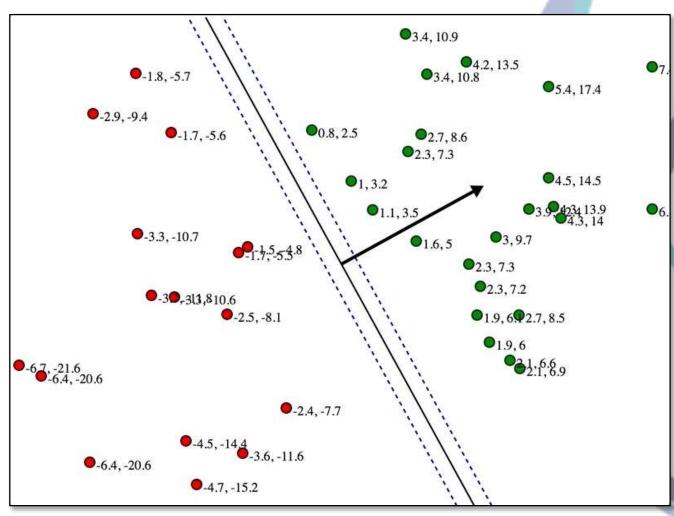
The goal is to choose a hyperplane with the greatest possible margin between the hyperplane and any point within the training set, giving a greater chance of new data being classified correctly.



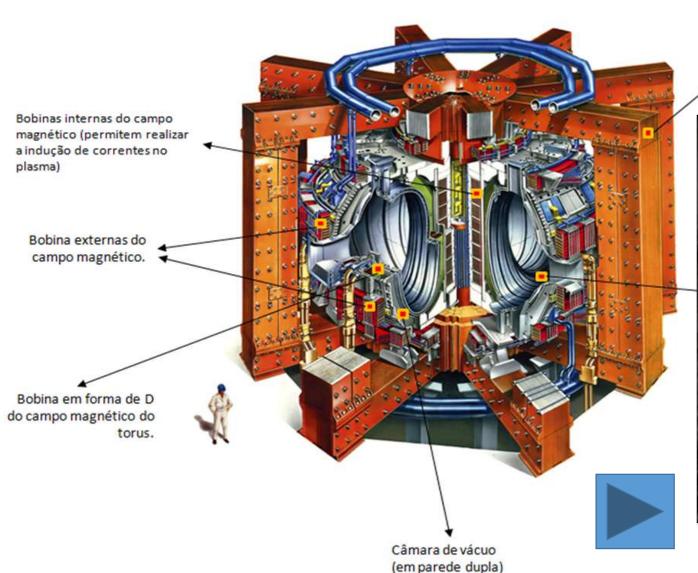
ML: Support Vector Machines - SVM

SVMs are based on the idea of finding a hyperplane that best divides a dataset into two classes.

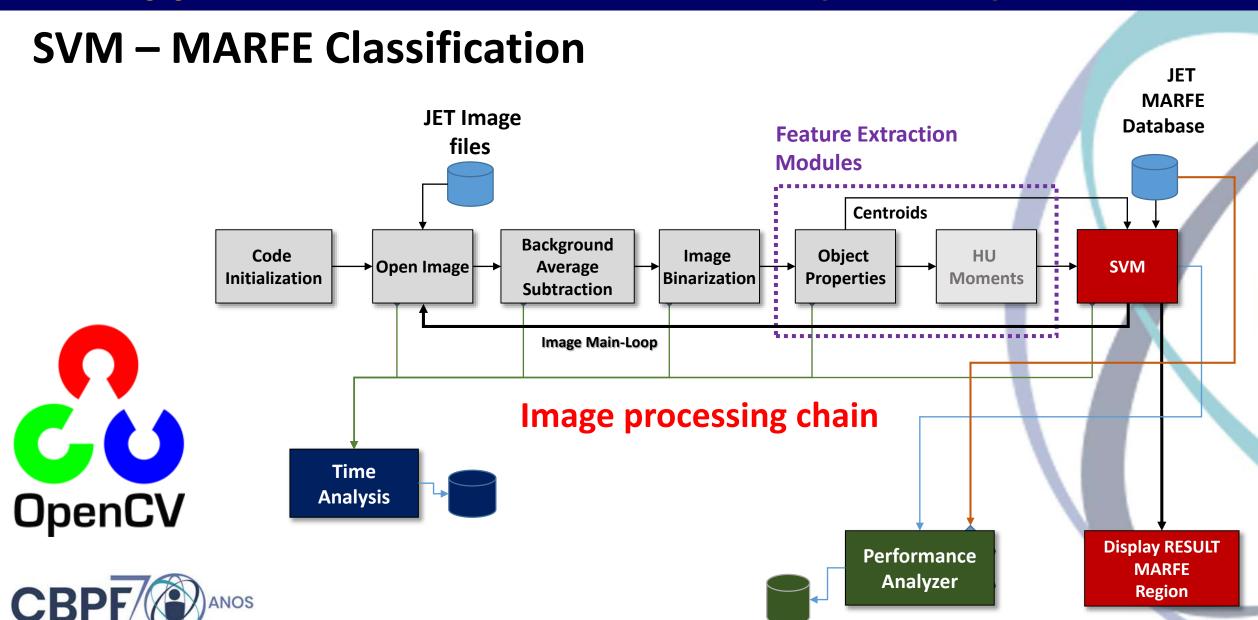


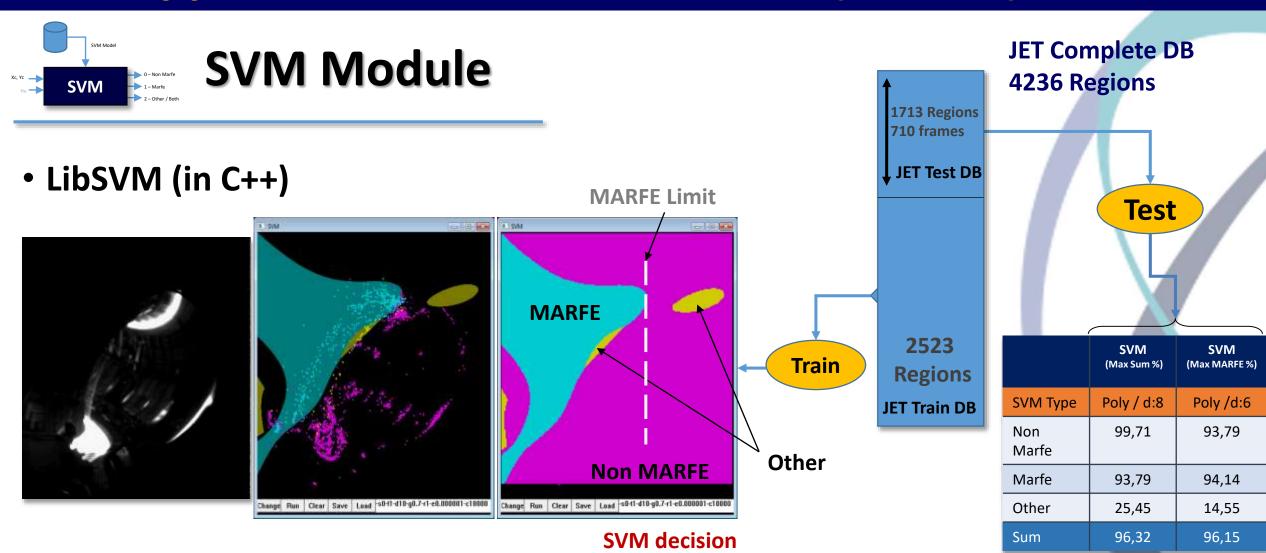


SVM – MARFE Classification



Núcleo de ferro do transformador.





Kernel type: polynomial

Evaluation test for different degree: 6, 8, 10 and 12.

(11018 SVM models were evaluated)

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 41, NO. 2, FEBRUARY 2013 341

A 10 000-Image-per-Second Parallel Algorithm for Real-Time Detection of MARFEs on JET

Márcio Portes de Albuquerque, Andrea Murari, M. Giovani, Nilton Alves, Jr., Marcelo Portes de Albuquerque, and JET-EFDA Contributors

Abstract-This paper presents a very high-speed image processing algorithm applied to multi-faceted asymmetric radiation from the edge (MARFE) detection on the Joint European Torus. The algorithm was built in serial and parallel versions and written in C/C+ using OpenCV, cvBlob, and LibSVM libraries. The code implemented was characterized by its accuracy and run-time performance. The final result of the parallel version achieves a correct detection rate of 97.6% for MARFE identification and an image processing rate of more than 10 000 frame per second. The parallel version divides the image processing chain into two groups and seven tasks. One group is responsible for Background Image Estimation and Image Binarization modules, and the other is responsible for region Feature Extraction and Pattern Classification. At the same time and to maximize the workload distribution, the parallel code uses data parallelism and pipeline strategies for these two groups, respectively. A master thread is responsible for opening, signaling, and transferring images between both groups. The algorithm has been tested in a dedicated Intel symmetricmultiprocessing computer architecture with a Linux operating system.

an entire and complex processing chain. Although parallelism depends on the problem, the low cost and the easy availability of multicore systems and parallel software make it much more attractive than in years past. On the other hand, the FPGA is still an interesting option, but its adoption in high-performance tasks is currently limited by the complexity of the FPGA design compared with the conventional software.

Magnetic confinement nuclear fusion is one of the recent fields in which digital image processing has become a fundamental tool in scientific instrumentation. Indeed, image processing is nowadays very important not only for the interpretation of the experiments but also for pattern retrieval in large databases [1], [2]. In the Joint European Torus (JET), about 30 new cameras have been installed for the current experiments with the new metallic wall. One of the most challenging characteristics of cameras as scientific instruments is the large amount

(6) INCH PRANSACTIONS OF PLASMA

SVM (Max MARFE %)

Poly /d:6

93,79

94,14

14,55

96,15

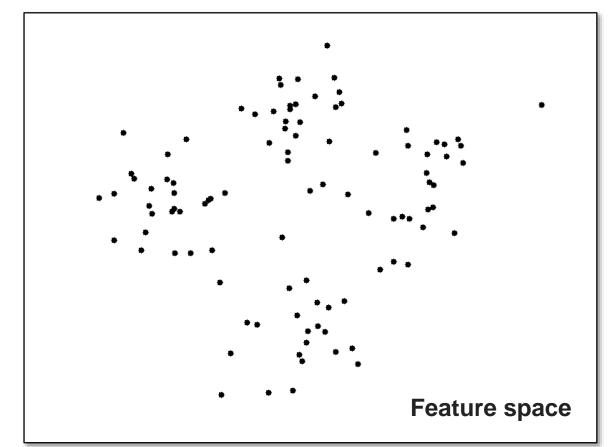
IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 41, NO. 2, FEBRUARY 2013 341

Evaluation test for different degree: 6, 8, 10 and 12.

(11018 SVM models were evaluated)

ML: K-Means (Unsupervised)

- K-Means partition the space into K classes.
- Each point belongs to the cluster with the nearest mean
- Here "nearest" is based on some norm (e.g. Euclidean norm)



dx.doi.org/10.7437/NT2236-7640/2016.01.003 Notas Técnicas, v. 6, n. 1, p. 19–27, 2016

Segmentação Textural de Imagens de Rocha por Microtomografia

Segmentation of Microtomography images of rocks using texture filter

Luciana Olivia Dias*

Centro Brasileiro de Pesquisas Físicas - Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brasil

Clécio R. De Bom[†]

Centro Federal de Educação, Tecnológica Celso Suckow da Fonseca, Rodovia Mário Covas,
lote J2, quadra J - 23810-000 Distrito Industrial de Itaguaí, Itaguaí, RJ e
Centro Brasileiro de Pesquisas Físicas - Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brasil

Heitor Guimarães, ‡ Elisângela L. Faria, § Márcio P. de Albuquerque, ¶ e Marcelo P. de Albuquerque**

Centro Brasileiro de Pesquisas Físicas - Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brasil

Maury D. Correia^{††} e Rodrigo Surmas^{‡‡}

Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES PETROBRAS,

Av. Horácio Macedo, 950, Cidade Universitária,

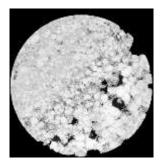
Rio de Janeiro, RJ - 21941-915, Brasil

Submetido: 29/09/2015 Aceito: 10/05/2106

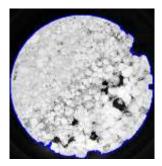
Resumo: A segmentação, realizada de maneira robusta, automatizada e eficiente, de diferentes fases em imagens de microtomografia é um fator crítico e limitador na área de Petrofísica de Rocha Digital. Abordamos a questão partindo de um algoritmo com técnicas baseadas em filtros, obtendo a maximização da Entropia Local para definir um limiar entre fundo e objeto. Validamos a qualidade da segmentação a partir de imagens de amostras de microesferas de vidro, recuperamos o raio das esferas e comparamos a técnica proposta com outros dois algoritmos de segmentação.

AttriTex

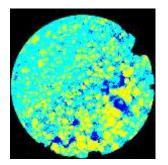
Kmeans with Automatic Contour ROI



Input Image

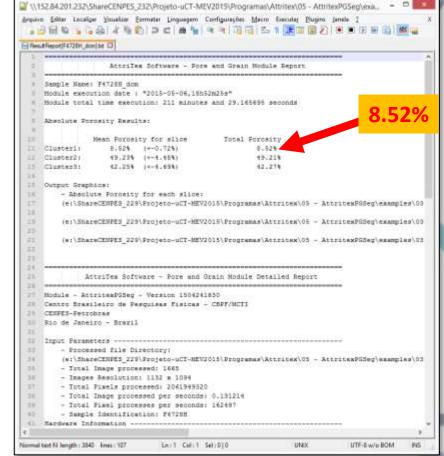


ROI Automatic Contour

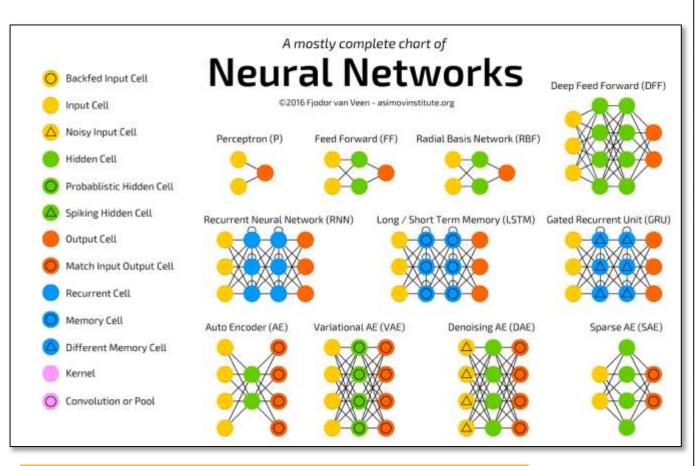


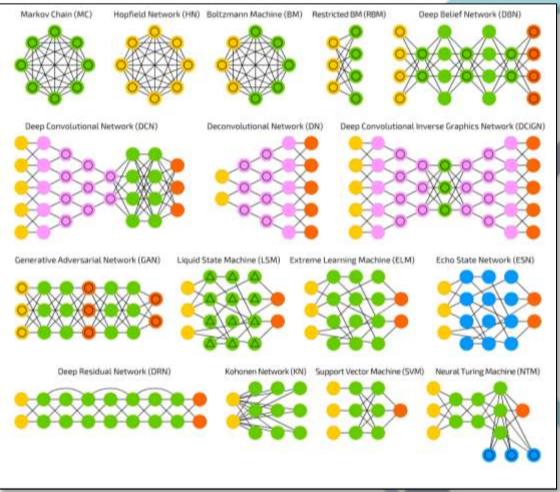
3 Clusters Image

- ■INPUT Image: F4728H (1665 DCM Images) = 1132x1094
- Expected mean porosity by Porosimeter: 8.5%
- ■ROI Automatic Contour
- Kmeans with 3 Clusters



Alguns termos importantes



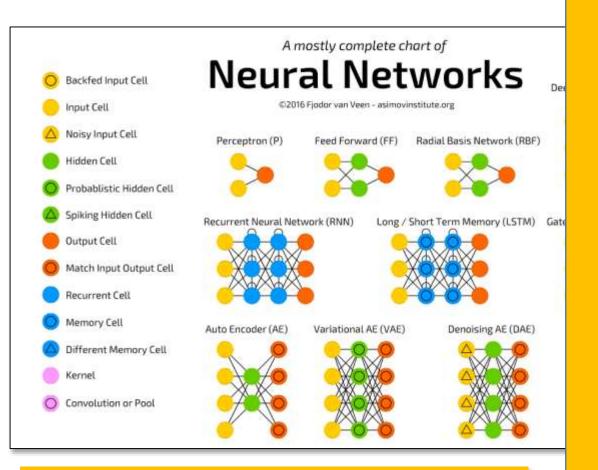


Asimov Institute

http://www.asimovinstitute.org/neural-network-zoo/

Redes Neurais Artificiais (RNAs) são modelos computacionais inspirados pelo sistema nervoso central de um animal (em particular o cérebro) e são capazes de realizar o "aprendizado de máquina" bem como "identificar padrões".

Alguns termos importantes



Asimov Institute

http://www.asimovinstitute.org/neural-network-zoo/

Redes Neurais Artificiais (RNAs) são modelos compu particular o cérebro) e são capazes de realizar o "aprendizado de maquina" bem como "identificar padroes".

Alguns termos básicos

Deep Learning é uma Rede Neural Artificial Deep Learning é uma área de Machine Learning

Alguns Termos de Redes Neurais Artificiais

MLP: Multi-layer Perceptron

DNN: Deep Neural Networks

RNN: Recurrent Neural Networks

LSTM: Long Short-Term Memory

CNN ou ConvNet: Convolution Neural Network

DBN: Deep Delief Networks

Operações das Redes Neurais Artificiais

Convolução

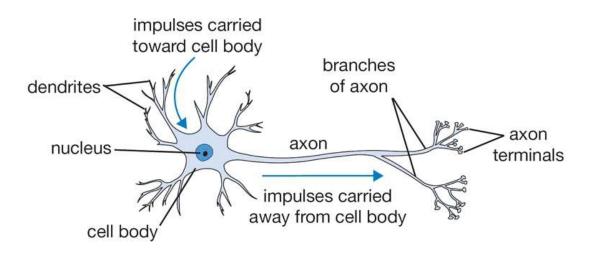
Pooling

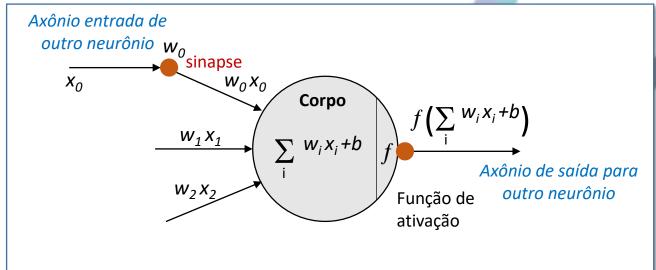
Função de Ativação

Backpropagation

Neurônio

Computação (Neurônio Artificial) → Inspiração na Biologia





Neurônio Biológico: bloco

computacional de processamento do cérebro.

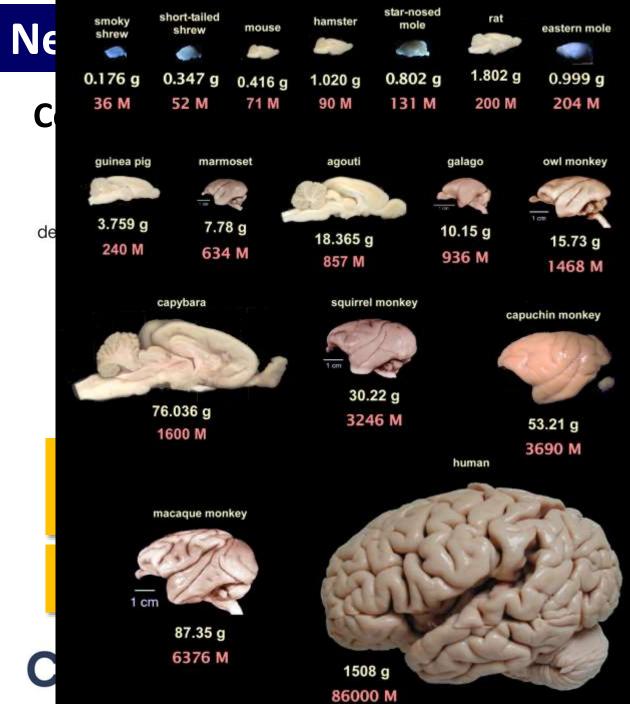
Cérebro Humano: ~100 – 1.000 trilhões

de sinapses

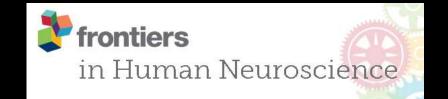
10.000 x

Neurônio Artificial: bloco computacional de processamento das Redes Neurais Artificiais.

Rede Neural Artificial : ~1 − 10 bilhões de sinapses.



Brain mass and total number of neurons for the mammalian species

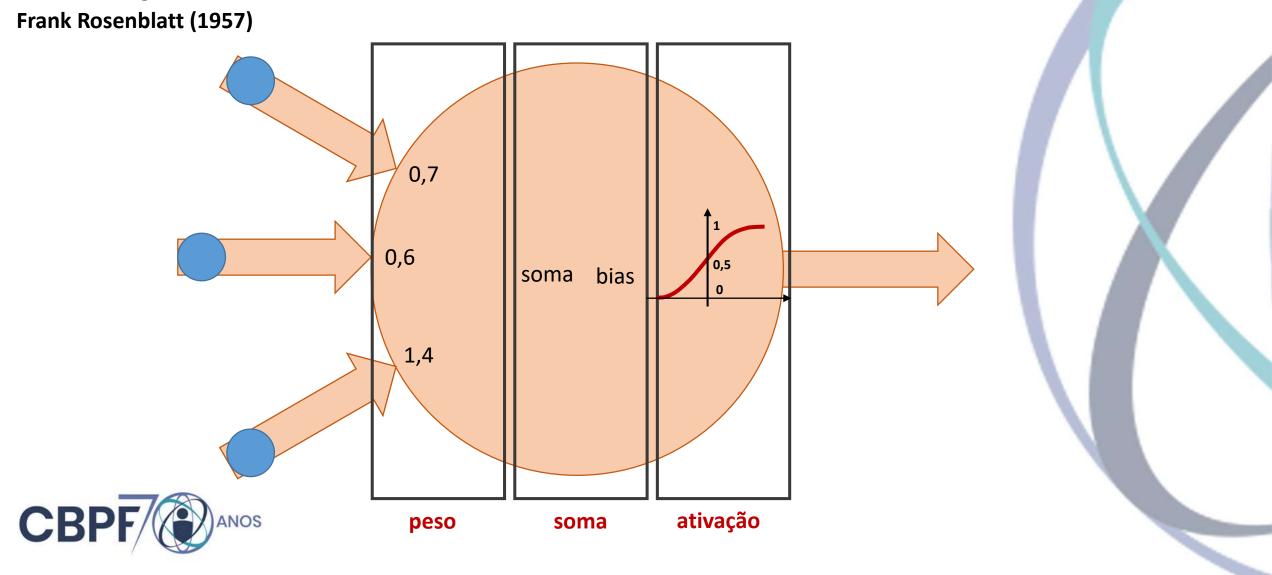


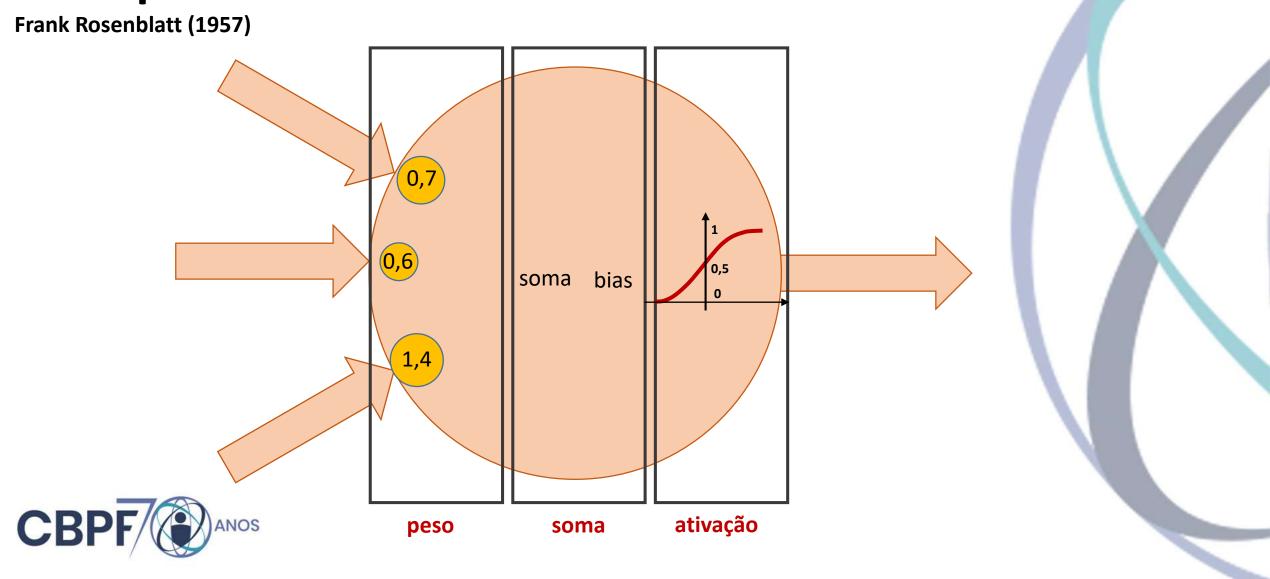
saída para eurônio

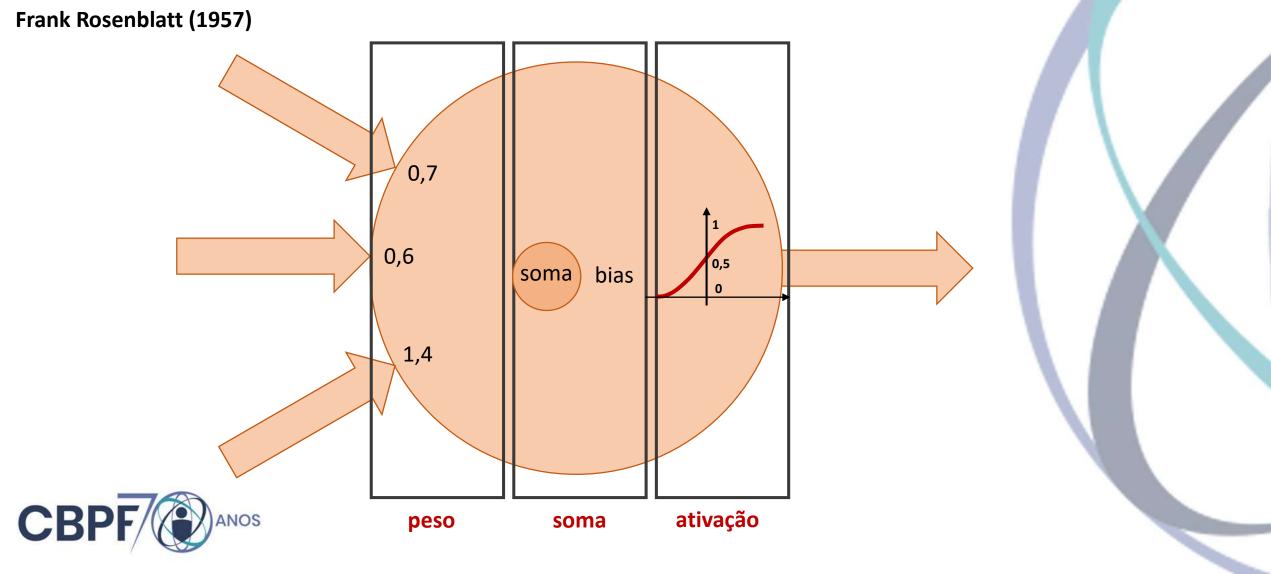
S. Herculano-Houzel

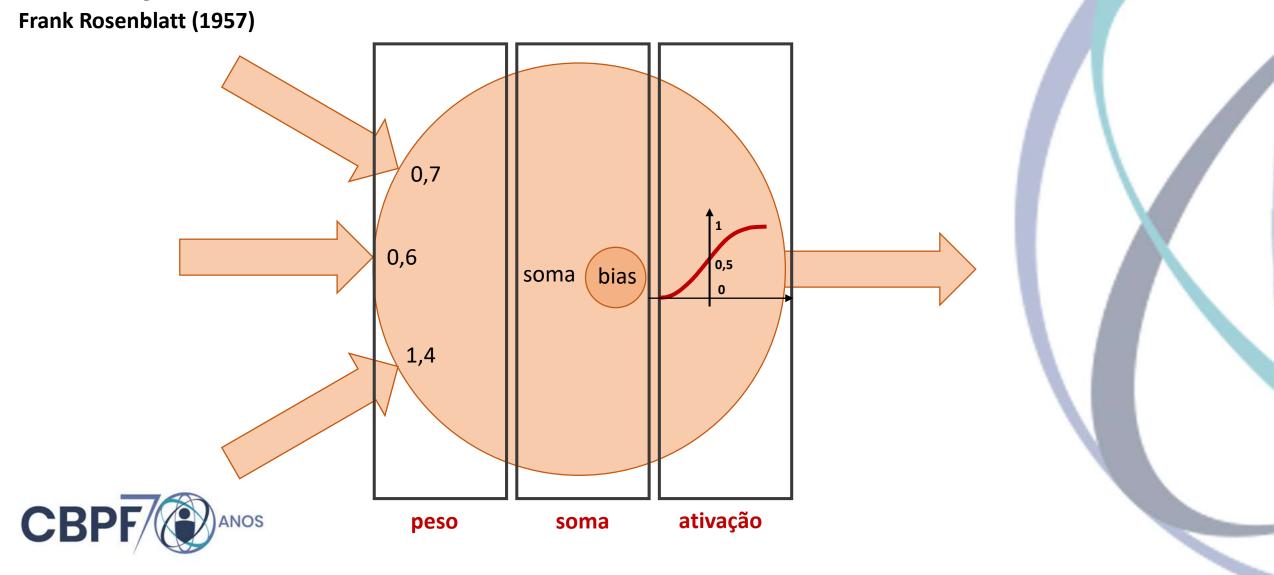
Front. Hum. Neurosci., November/2009 doi.org/10.3389/neuro.09.031.2009

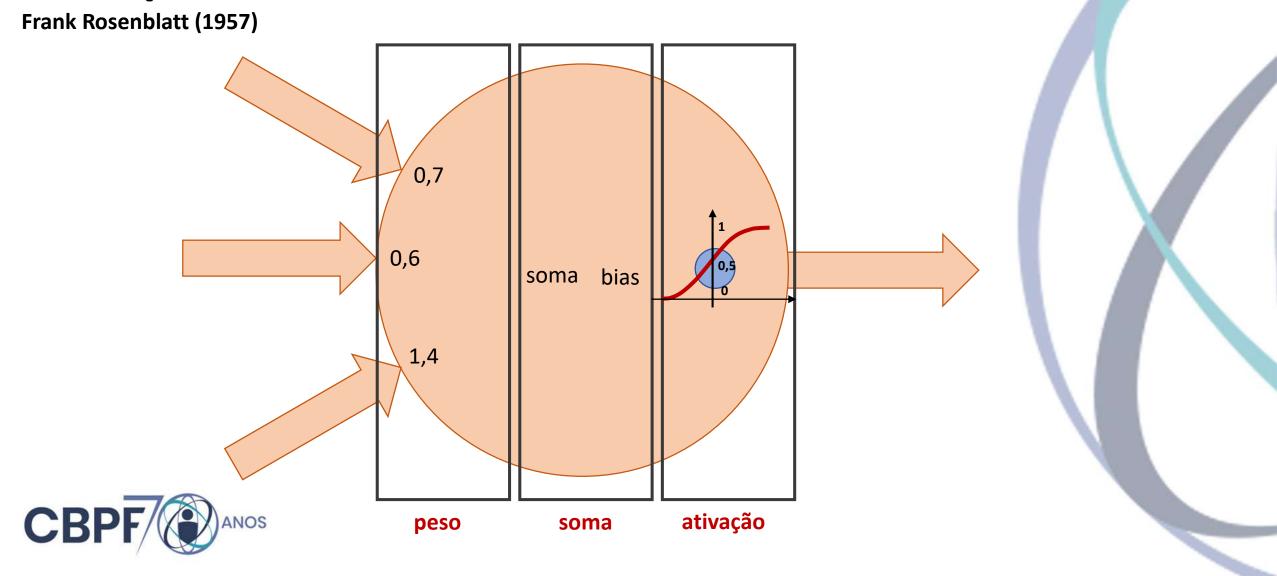
The human brain in numbers: a linearly scaled-up primate brain

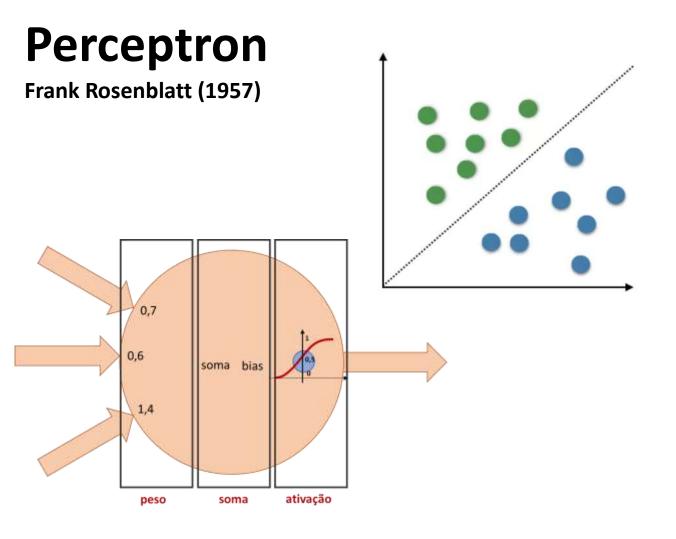












Algoritmo

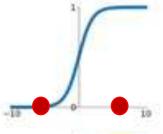
- Inicialize a rede Perceptron com pesos (w) aleatórios;
- Para uma data entrada, processe a saída da rede;
- Se a saída da rede não for igual a saída desejada, então a rede deve ser alterada, trocando os valores dos pesos (w) das sinapses;
- Repita esse procedimento com todos os dados de treinamento até a rede Perceptron não apresentar mais erros.

Função de Ativação

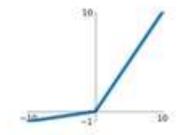
Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

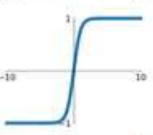


Leaky ReLU max(0.1x, x)



tanh

tanh(x)

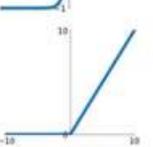


Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

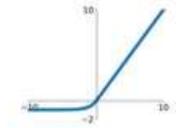
ReLU

 $\max(0,x)$



ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

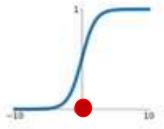


Função de Ativação

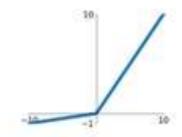
Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

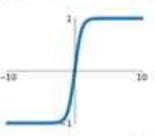


Leaky ReLU max(0.1x, x)



tanh

tanh(x)

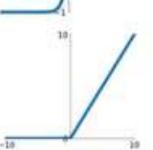


Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

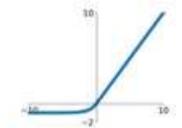
ReLU

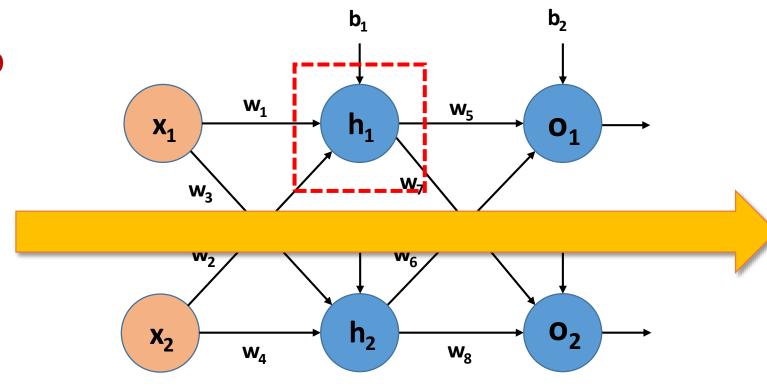
 $\max(0,x)$



ELU

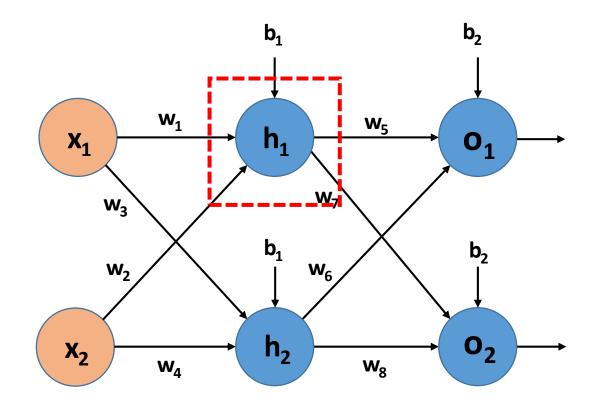
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$





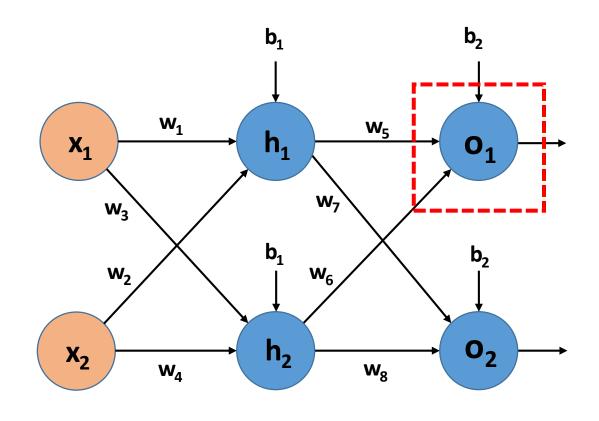
$$uh_1 = x_1 * w_1 + x_2 * w_2 + b_1 * 1$$

$$g(h_1) = g(uh_1) = \frac{1}{1 + e^{-uh_1}}$$



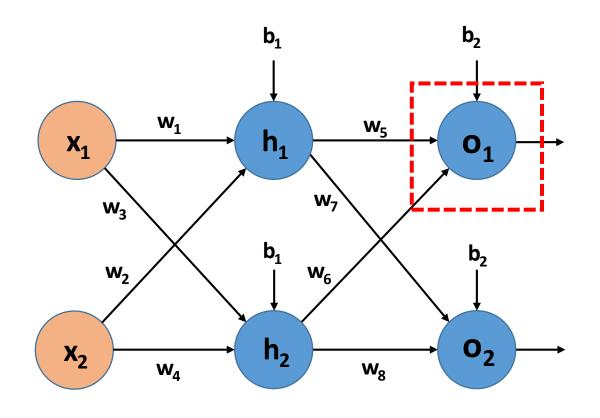
$$uh_2 = x_1 * w_3 + x_2 * w_4 + b_1 * 1$$

$$g(h_2) = g(uh_2) = \frac{1}{1 + e^{-uh_2}}$$



$$uo_1 = g(h_1) * w_5 + g(h_2) * w_6 + b_2 * 1$$

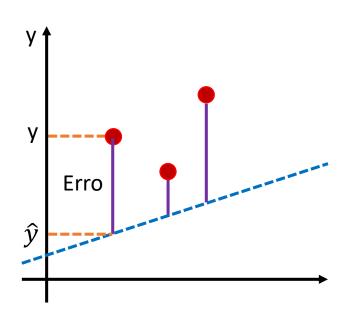
$$\hat{y}_1 = g(o_1) = g(uo_1) = \frac{1}{1 + e^{-uo_1}}$$



$$uo_2 = g(h_1) * w_7 + g(h_2) * w_8 + b_2 * 1$$

$$\hat{y}_2 = g(o_2) = g(uo_2) = \frac{1}{1 + e^{-uo_2}}$$

Rede Neural Artificial: Erro/Custo



y = valor original

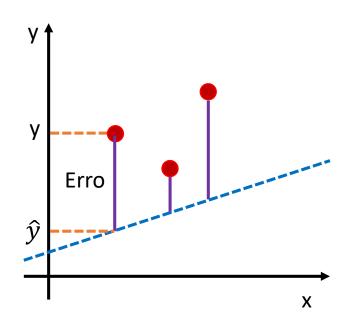
 \hat{y} = valor predito

$$\hat{y}_n = g(o_n) = g(uo_n) = \frac{1}{1 + e^{-uo_n}}$$

$$J(w_n) = \frac{\sum_{i=1}^{m} (\hat{y}_i - y_i)^2}{m}$$
CUSTO
COST
$$(média)$$

MSE (Mean Square Error – Erro quadrático médio)

Rede Neural Artificial: Erro/Custo



y = valor original

 \hat{y} = valor predito

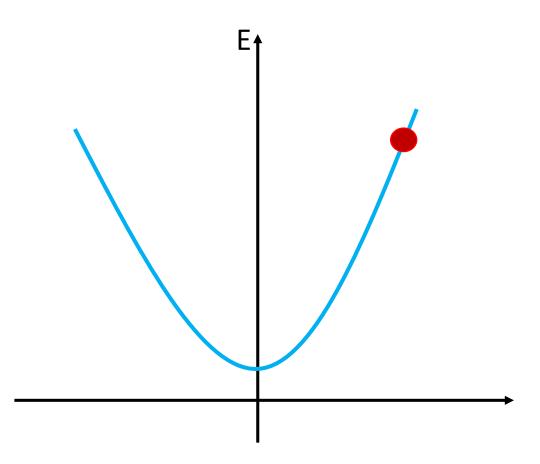
$$\hat{y}_n = g(o_n) = g(uo_n) = \frac{1}{1 + e^{-uo_n}}$$

$$J(w_n) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

MSE (Mean Square Error – Erro quadrático médio)

Como reduzir o custo? $\min_{(w)} J(w_n)$

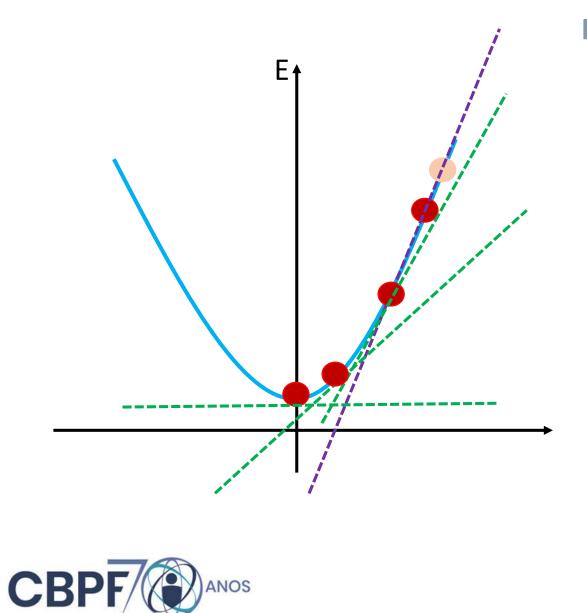
Rede Neural Artificial: Otimização



Função quadrática

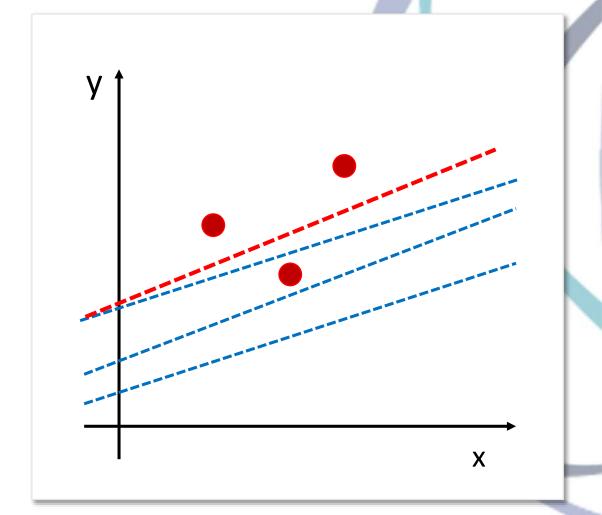
$$(\hat{y}_i - y_i)^2$$

Rede Neural Artificial: Otimização

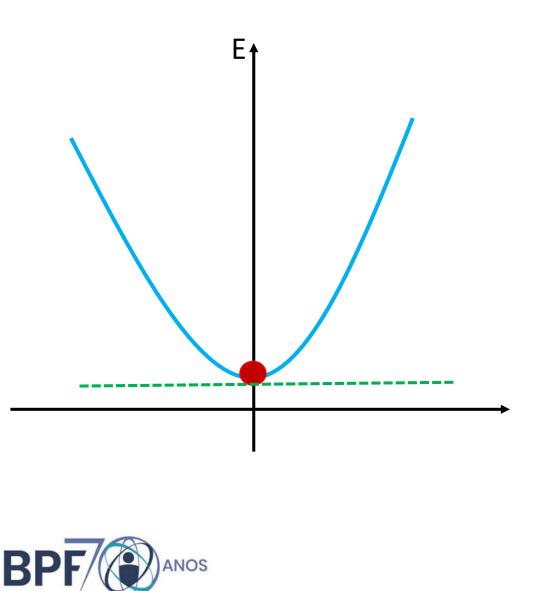


Função quadrática

$$(\hat{y}_i - y_i)^2$$

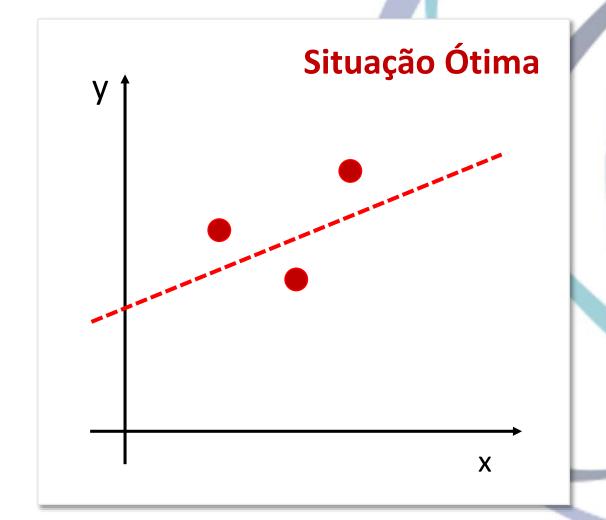


Rede Neural Artificial: Otimização



Função quadrática

$$(\hat{y}_i - y_i)^2$$



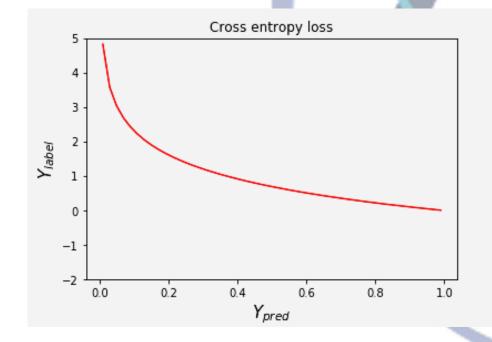
Loss function (função custo)

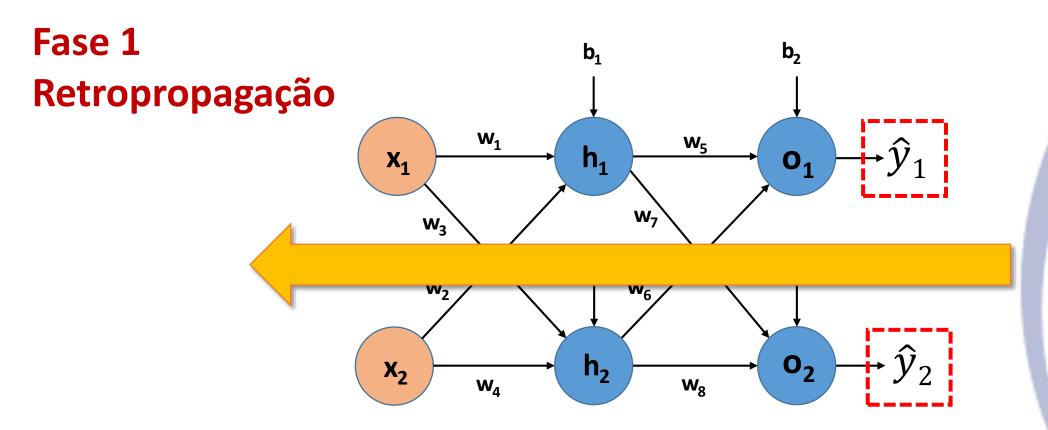
Loss functions in Machine Learning serve as ways to measure the distance or difference between a model's predicted output Y_{out} and the ground truth label Y in order to train our model effectively

• L2 Norm loss/ Euclidean loss function: L2 =
$$(Y_{true} - Y_{pred})^2$$

Cross entropy Loss:

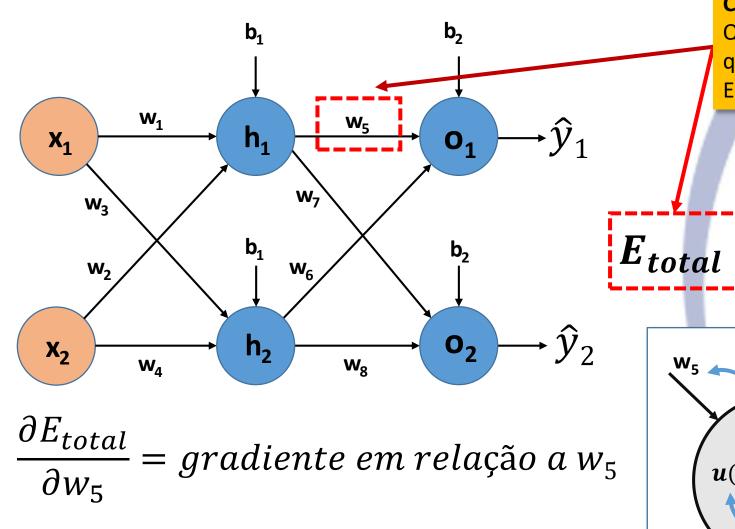
$$H(p,q) = -\sum_{i} p_{i} log q_{i} = -y log \hat{y} - (1-y) log (1-\hat{y})$$



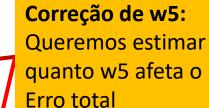


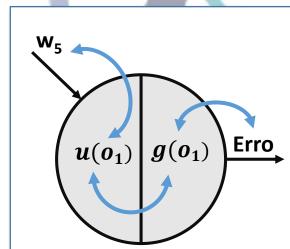
$$E_{total} = \frac{1}{2} \sum_{k=1}^{N} (\hat{y}_k - yk)^2 = E_{o1} + E_{o2}$$

Fase 1 Retropropagação

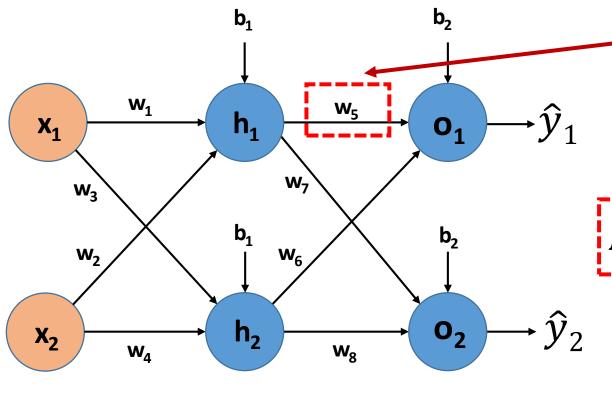


$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial go_1} * \frac{\partial go_1}{\partial uo_1} * \frac{\partial uo_1}{\partial w_5}$$





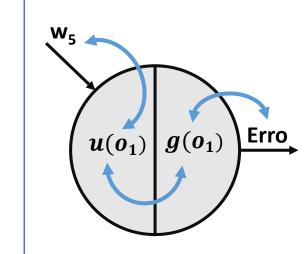
Fase 1 Retropropagação



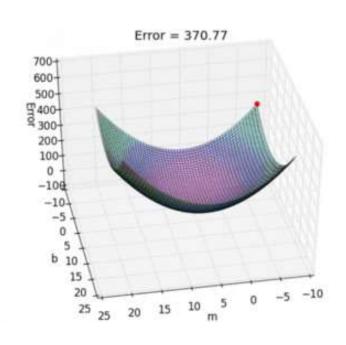
$$w_5(t+1) = w_5(t) - \eta \frac{\partial E_{total}}{\partial w_5}$$

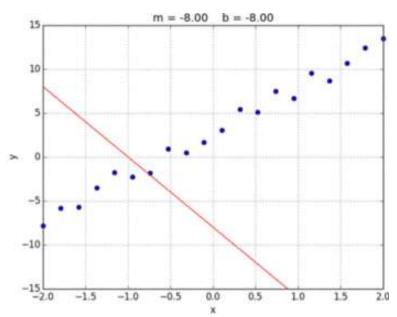
Correção de w5:

Queremos estimar quanto w5 afeta o Erro total

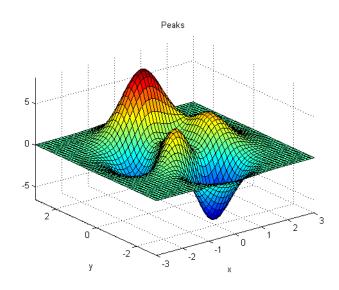


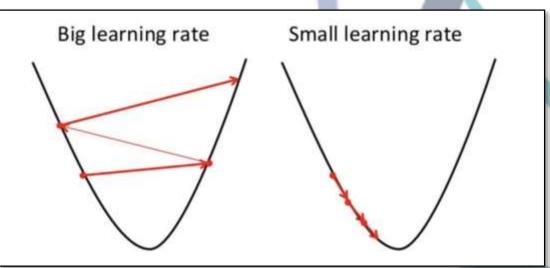
Stochastic Gradient Descent - Algorithm



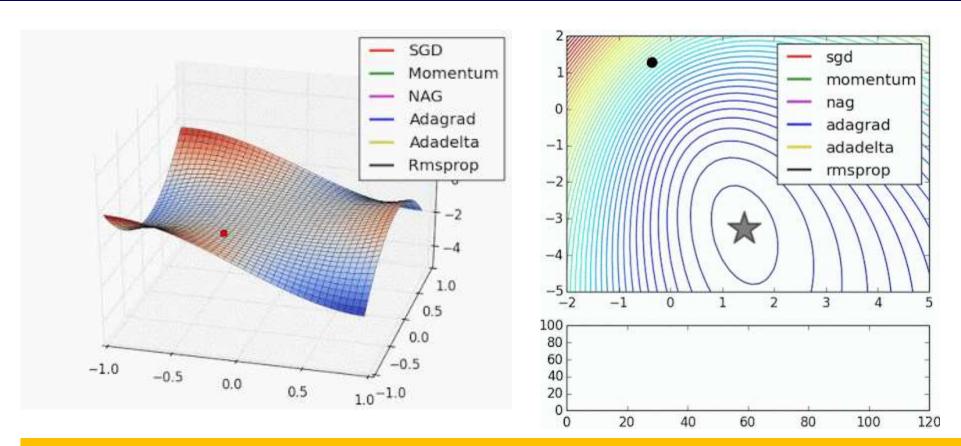


$$w_5(t+1) = w_5(t) - \eta \frac{\partial E_{total}}{\partial w_5}$$





Artificial Neural Network: Optimization Algorithms



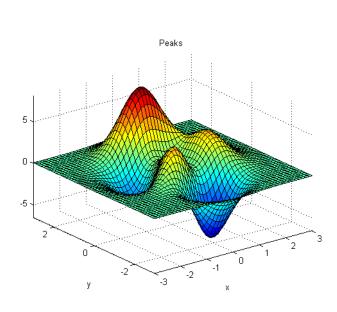
SGD: Stochastic Gradient Descent

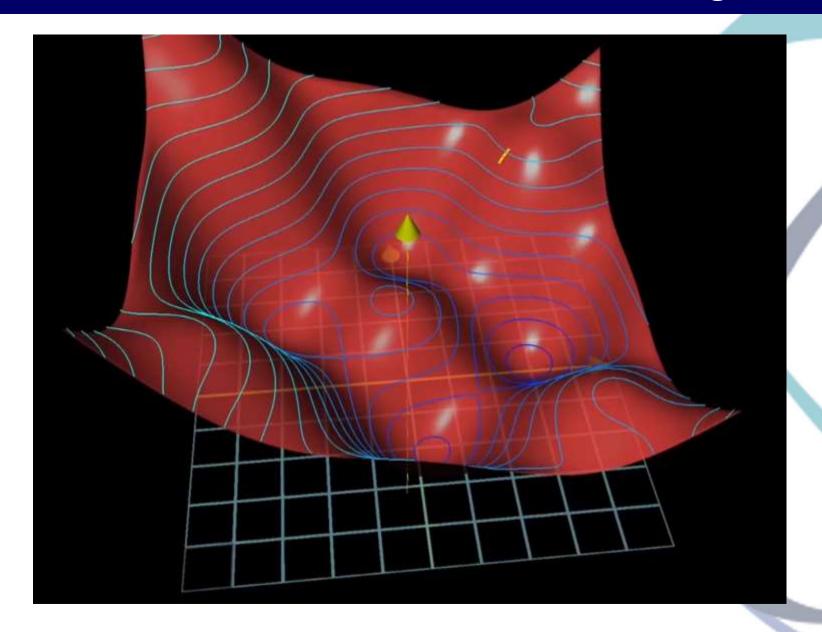
ADAGRAD: Adaptive Gradient

ADADELTA: Adaptive Learning Rate Method **RMSPROP**: Root Mean Square Propagation

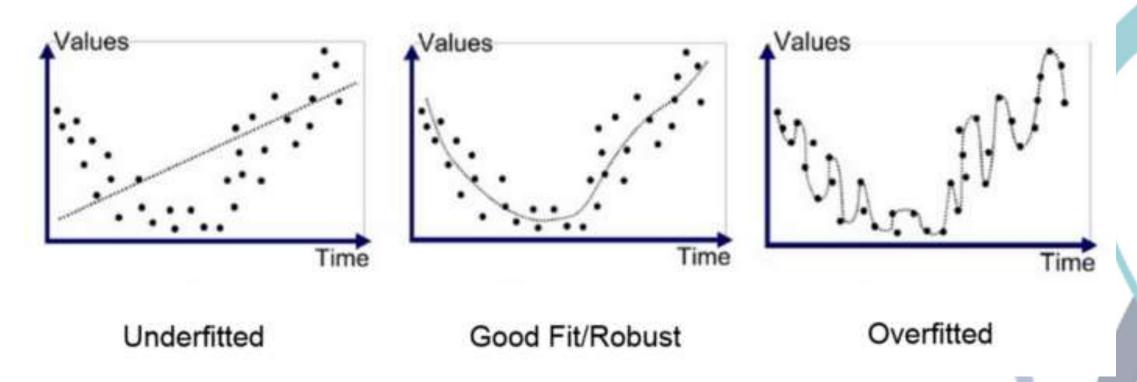
Gradient depends on the average of the magnitudes of squares of previous gradients.

Stochastic Gradient Descent - Algorithm

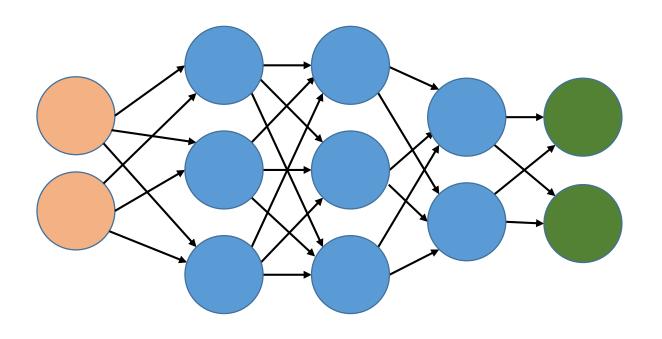




Artificial Neural Network: Overfitting

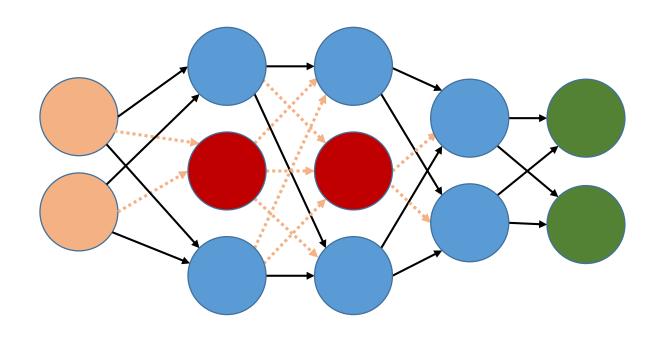


O **overfitting** (*sobreajuste*) é um termo para descrever quando um modelo se ajusta muito bem ao conjunto de dados, mas se mostra ineficaz para prever novos resultados.

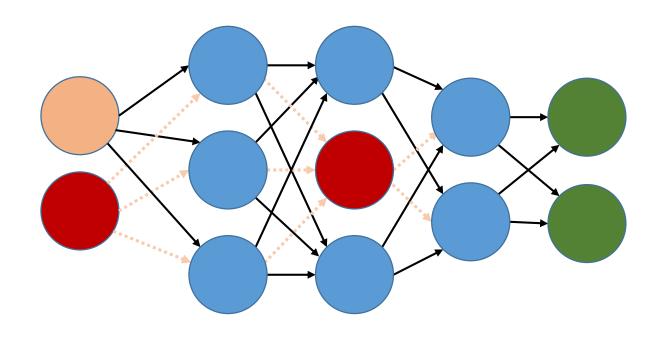


Dropout is a technique where randomly selected neurons are ignored during training. They are "dropped-out" randomly.

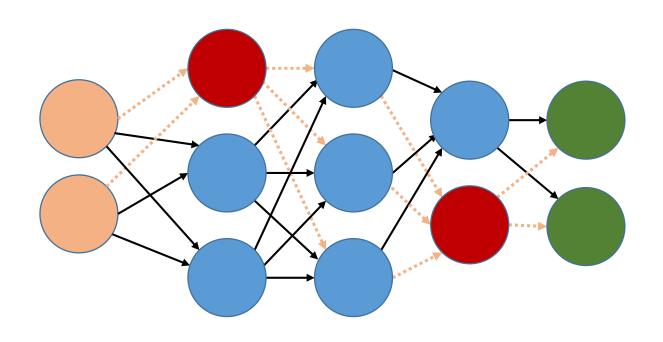
Durante o processo de treinamento devemos escolher uma probabilidade de retirada de neurônios.



Dropout is a technique where randomly selected neurons are ignored during training. They are "dropped-out" randomly.

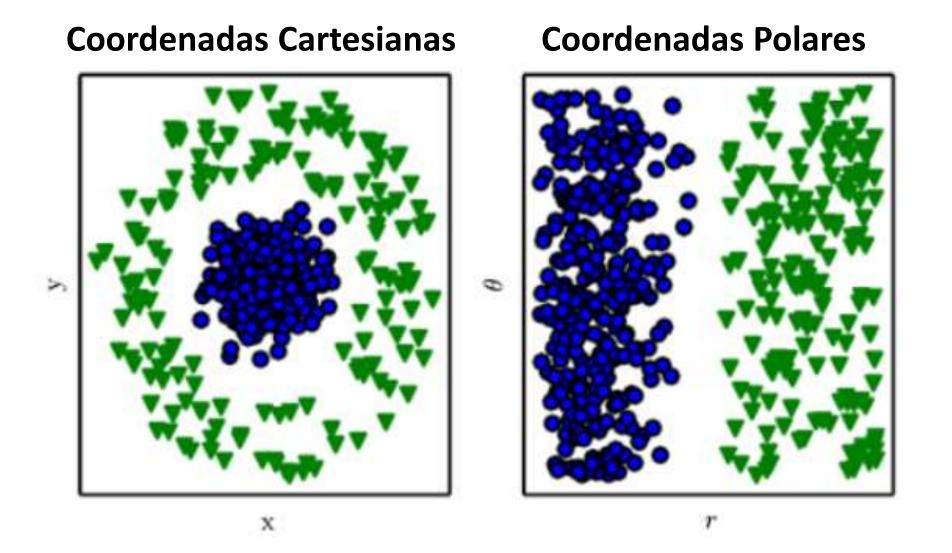


Dropout is a technique where randomly selected neurons are ignored during training. They are "dropped-out" randomly.



Dropout is a technique where randomly selected neurons are ignored during training. They are "dropped-out" randomly.

A Representação dos dados é importante

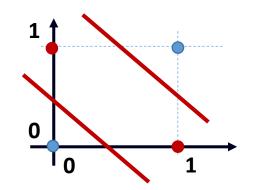


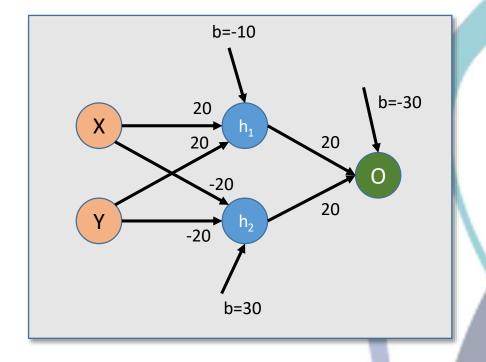
Rede Neural Artificial: O problema do OU Exclusivo

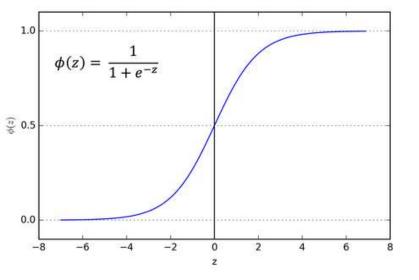
Multi-Layer Perceptron

XOR

Х	Υ	S
0	0	0
0	1	1
1	0	1
1	1	0







RNA: Estruturas e Tipos de Regiões de Decisão

An Introduction to Computing with Neural Nets

Richard P. Lippmann

Artificial regeal not models have been studied for more years in the hope of achieving human-like portionsorus in the formance speech and image recognition. This paper provides worst than summation an introduction to the field of artificial sword nets by mblocks that illustrate neural-net components and design prinblock that Blotzek neural- net component and design pro-ciples and can be used to construct some complex system. In existing these sets, a major emphasis is placed by the construction of the construction of the construction of the construction of the place of much contrared research. on exploring how some existing classification and chatering the potential time some strong countries of the potential potential configuration can be performed using simple measure flat configuration for the processing of the proposition contains provided by massive parallelian powers. Single-layer safe can implement algorithms required to the processing provide a greater degree of release. forward manner by flere-layer heed-forward nets.

4 HEE MEET MAGAZING APPL 1987

using mustively parallel nets composed of many computastoral elements connected by time with variable weights.

Computational elements or modes used in neural net fields of speech and image recognition. These models are slow compared to modern digital circuits. The compless models are nonlinear, are typically analog, and may be needs to spectra and serger computational elements open-composed of many rendering computational elements open-sing in parallel and arranged in patterns reministered of bio-triumpit a nonlinearity at above to fig. 1. The node in diligit or paramet the prompter in the contract of the contrac insurance performance. There has been a recent resurgence in super of nonlinearities; hard limiters, threshold logic elethe field of artificial neural auth caused by new set topologise assets, and signoidal nonfinearities. Howe complex nodes and algorithms, analog VLSI implementation techniques, and may include temporal integration or ather types of time the belief that meaning parallelism is countful for high per-dependencies and more complex mathematical opera-

Naural nat models are specified by the net topology viewing six important neural net models that can be used for scotle characteristics, and maining or harming rules. These pattern classification. These sets are highly parallel building rules specify an initial set of weights and indicate hose

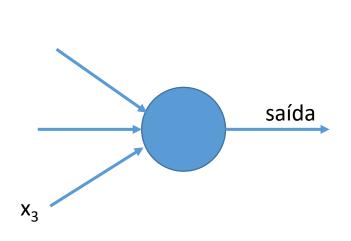
by Gazetian maximum-likelihood classifiers and optimum second facility tolerance than you recurrent sequential comminimum-error classifies for binary patterns consisted by point Security from the processing modes, now personals, the decidence regions required by any classification algorithm can be presented in a straight. significantly. Most neural net algorithms also adapt connection weights in time to improve performance based on current results. Adaptation or learning is a major focus of Artificial neural net models or simply "neural nets" go neural net research. The ability to adapt and continue by many number such as connectioned models, parallel learning is essential in areas each as speech recognition distributed processing models, and transcereptive two where training data is limited and new talkers, new words. terms. Whatever the name, all these models attempt to new shalects, new physics, and new environments are achiese good performance via dense interconnection of continuously encountered. Adaptation also provides a desimple computational elements. In this respect, artificial gree of relocitness by compensating for minor variabilities neutal net structure is based on our present under- in characteristics of processing elements. Traditional stastanding of biological nervous systems, learned set models. Natural techniques are not adaptive but typically precious all have greatest potential in areas such as spench and integer. Insining state simultaneously before being used with new recognition where many hypotheses are pursued in paral-data. Neural net classifiers are also non-parameter, and lef. high correlatation rates are required, and the current make weaker assumptions concerning the shapes of underbest systems are far from equaling human performance. Iying distributions than traditional statistical classifiers. instead of performing a program of instructions sequentially as in a von Neumann computer, neuml not models, are governmed by reminest processes and are occupyly explore many competing hypotheses simultaneously non-Gaussian. Designing artificial resurt nets to solve

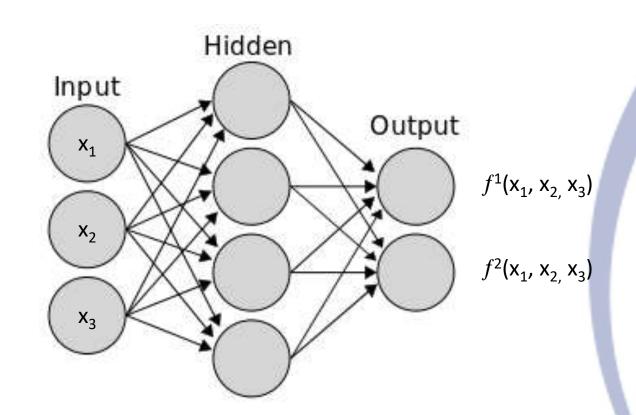
STANDARD SANDARD STANDARD OF STAND STAND

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Abitrary (Complexity Limited by No. of Nodes)	B A	B	

R. Lippmann, "An introduction to computing with neural nets", IEEE ASSP Magazine, vol. 4, no. 2, pp. 4-22, Apr/1987.- doi: 10.1109/MASSP.1987.1165576

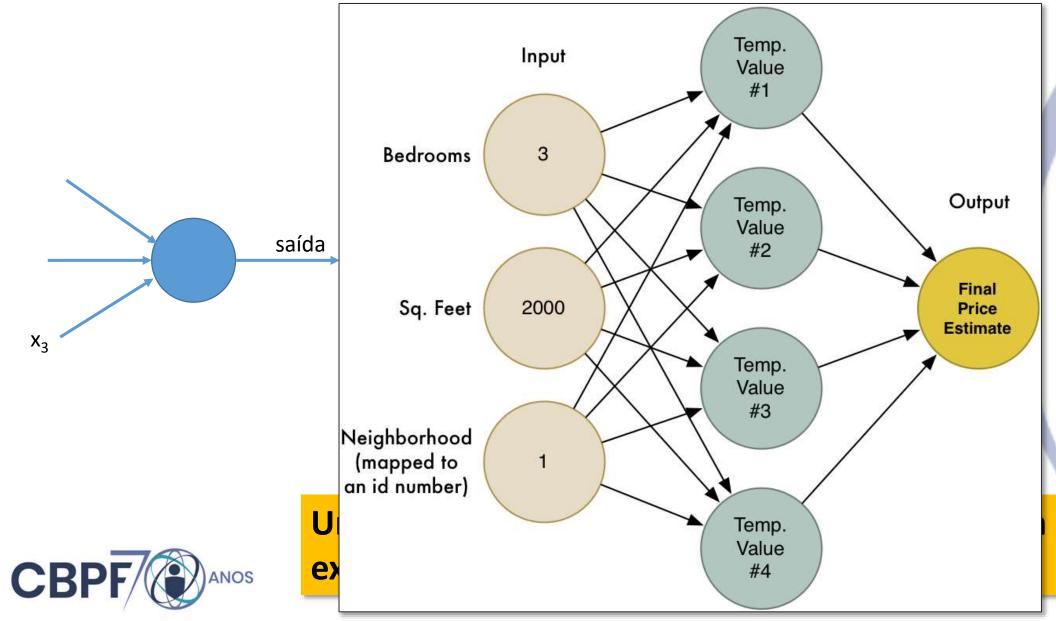
Rede Neural Artificial:





Universalidade: para qualquer função arbitrária f (x), existe uma rede neural que a aproxima.

Rede Neural Artificial:



f (x),

DEEP LEARNING = APRENDIZADO PROFUNDO

- SISTEMAS COMPUTACIONAIS
 - CPUs, GPUs, ASICs
 - MEMÓRIA

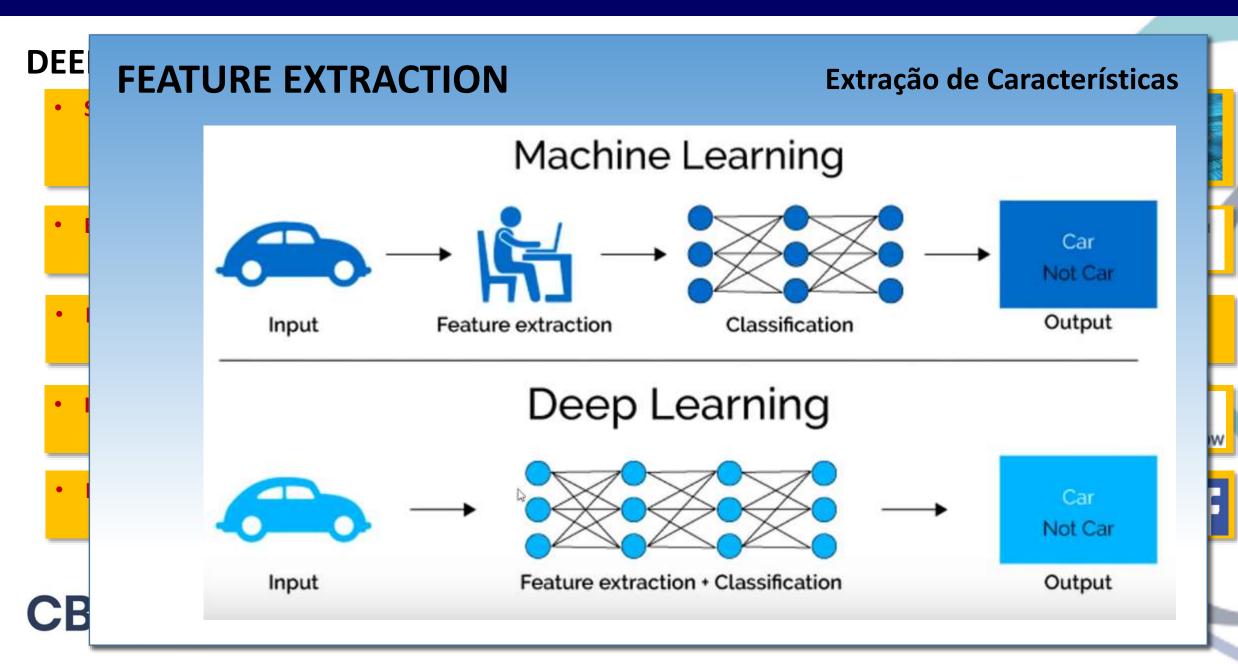
- BANCO DE DADOS ESTRUTURADOS
 - Imagenet

14,197,122 images, 21841 synsets indexed

Explore Download Challenges Publications CoolStuff About

- P&D (CONCEITOS e ALGORITMOS)
 - CNN, RCNN, BACKPROP, LSTM, ...
- INFRAESTRUTURA DE SOFTWARE
 - Git, AWS, AMAZON MECHANICAL TURK, GOOGLE TENSORFLOW

- INTERESSE COMERCIAL E FINANCIAMENTO POR GRANDES COMPANHIAS
 - Google, Facebook, Amazon, ...



DEEP LEARNING = APRENDIZADO PROFUNDO

Going Deeper with Convolutions

Christian Szegedy¹, Wei Liu², Yangqing Jia¹, Pierre Sermanet¹, Scott Reed³,

Dragomir Anguelov¹, Dumitru Erhan¹, Vincent Vanhoucke¹, Andrew Rabinovich⁴

¹Google Inc. ²University of North Carolina, Chapel Hill

³University of Michigan, Ann Arbor ⁴Magic Leap Inc.

 $^{1}\{$ szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke $\}$ @google.com

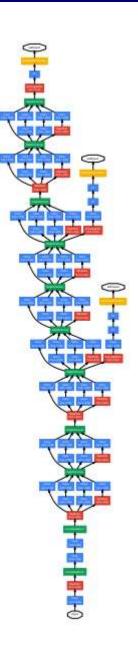
Abstract

We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

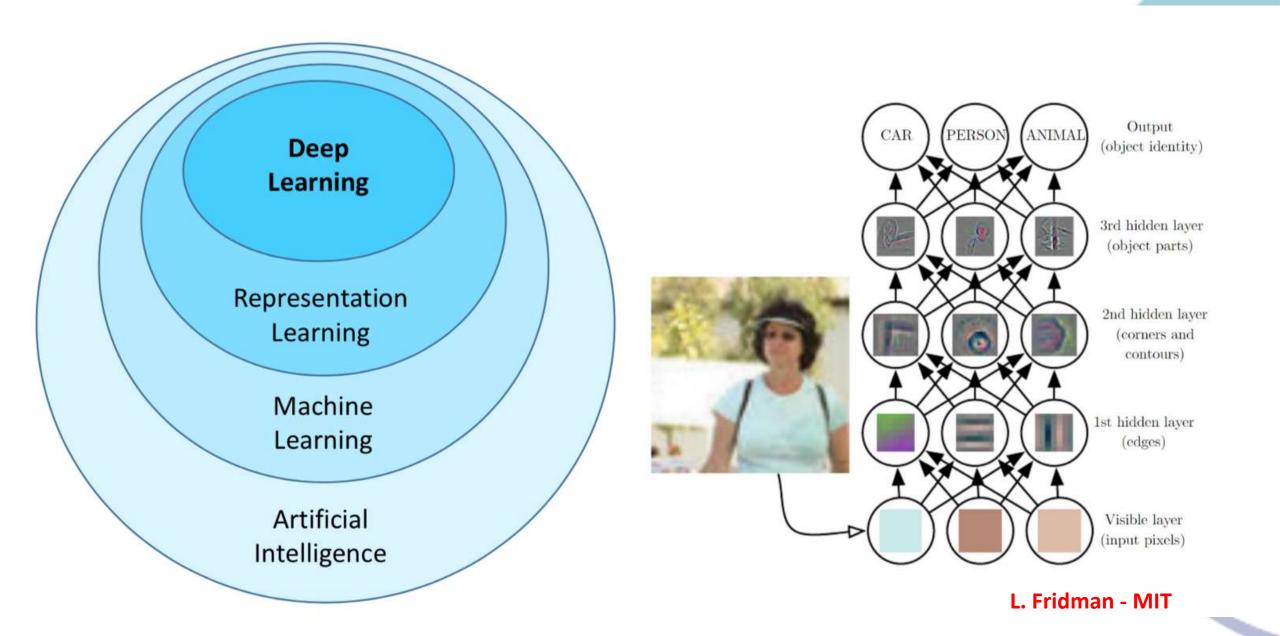
ger and bigger deep networks, but from the synergy of deep architectures and classical computer vision, like the R-CNN algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction of mobile and embedded computing, the efficiency of our algorithms – especially their power and memory use – gains importance. It is noteworthy that the considerations leading to the design of the deep architecture presented in this paper included this factor rather than having a sheer fixation on accuracy numbers. For most of the experiments, the models were designed to keep a computational budget of 1.5 billion multiply-adds at inference time, so that the they do not end up to be a purely academic curiosity, but could be put to real world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient deep neural network architecture for computer vision, codenamed Inception, which derives its name from the Network in network paper by Lin et al [12] in conjunction with the famous



²wliu@cs.unc.edu, 3reedscott@umich.edu, 4arabinovich@magicleap.com



Inteligência Artificial

Indo para a prática

Version 1.36 is now available! Read about the new features and fixes from June.

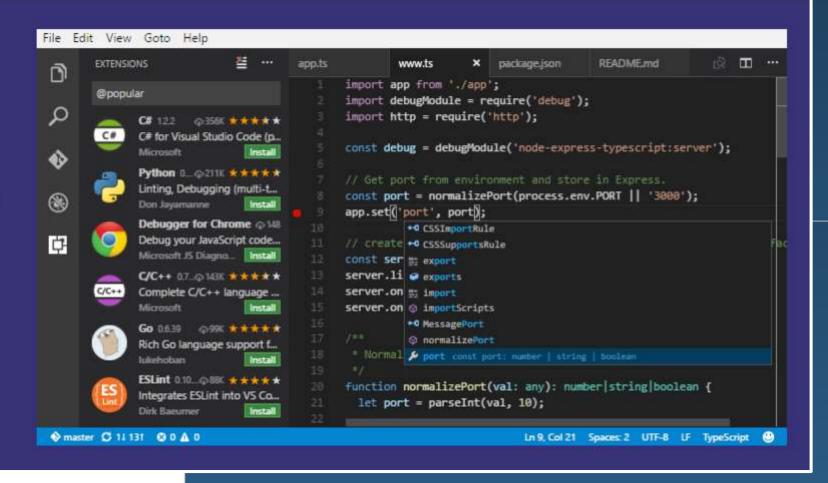
Code editing. Redefined.

Free. Built on open source. Runs everywhere.

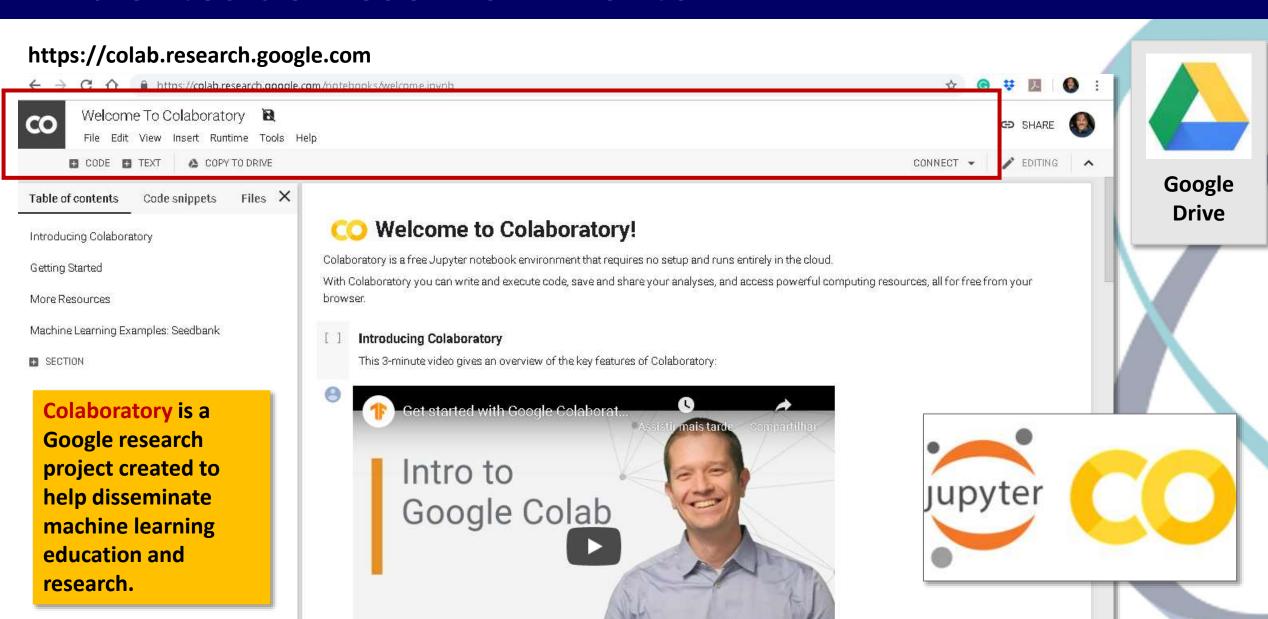
Download for Windows
Stable Build

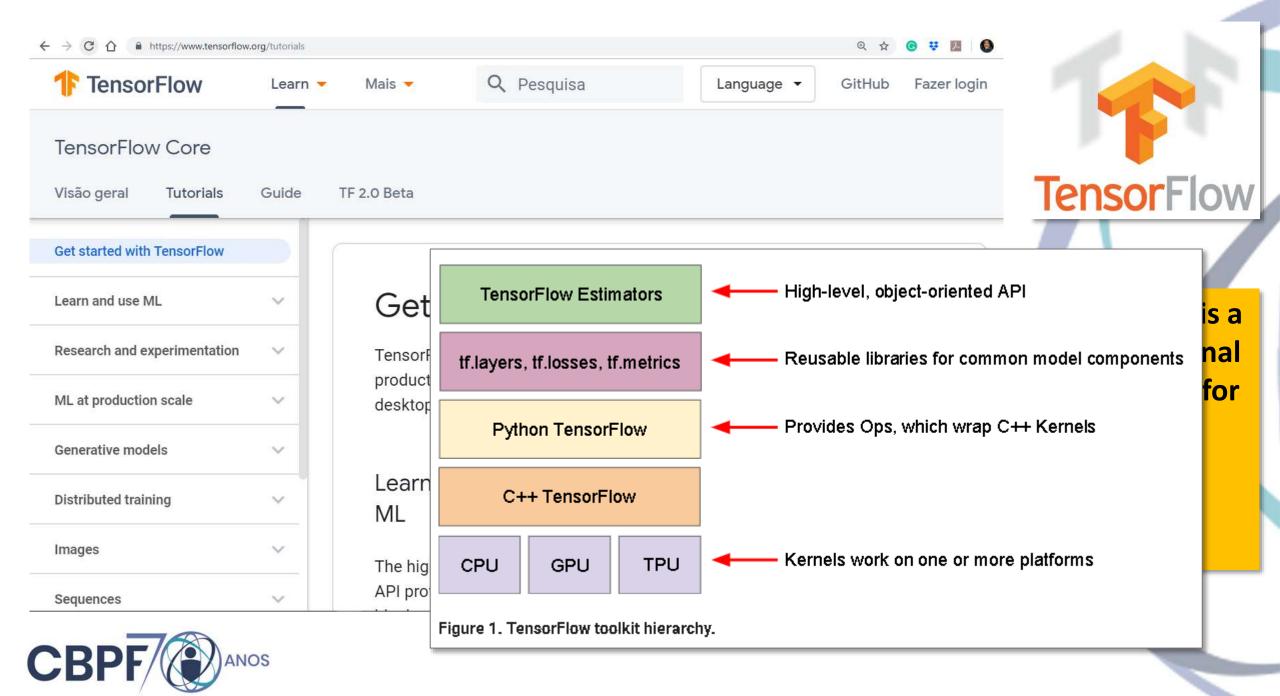
Other platforms and Insiders Edition

By using VS Code, you agree to its license and privacy statement.

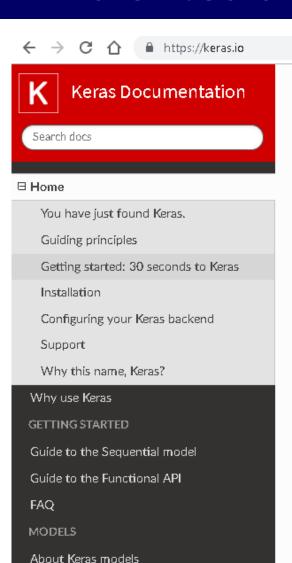


Ambientes de Desenvolvimento





Ambientes de Desenvolvimento



Sequential

Ω GitHub

Model (functional API)

Next »

Docs » Home

🗘 Edit on GitHub

Keras: The Python Deep Learning library

You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

- · Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
- Supports both convolutional networks and recurrent networks, as well as combinations of the two.
- · Runs seamlessly on CPU and GPU.

Keras is a highlevel neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano.

API - "Application Programming -"Interface" -Interface para Programação de Aplicativos".

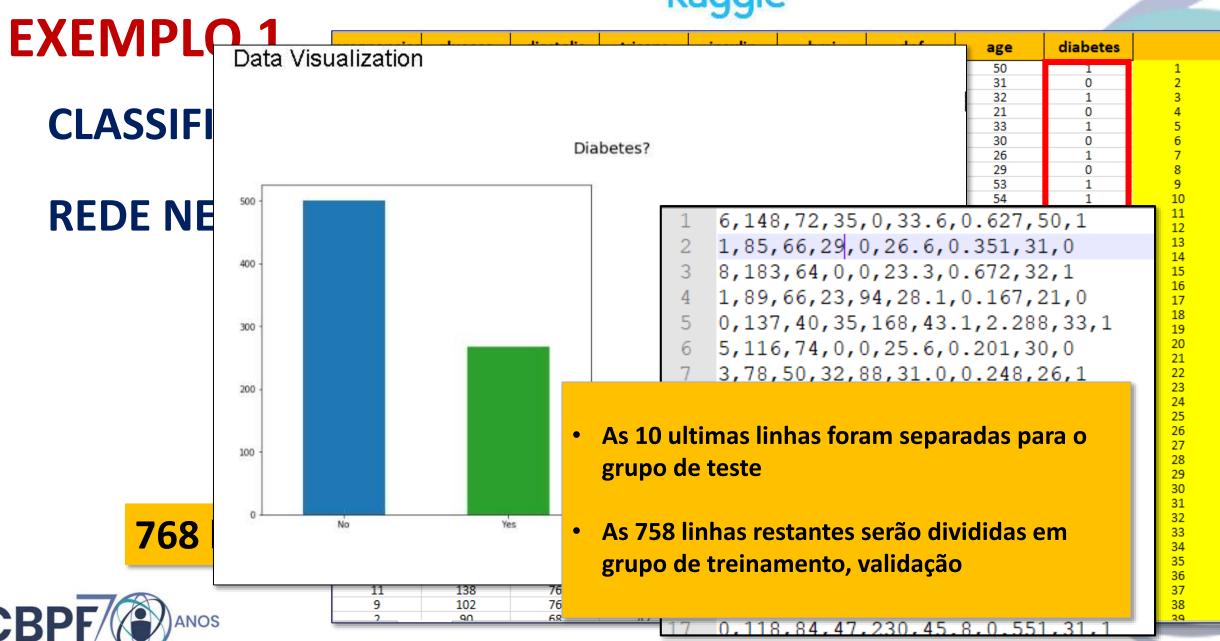
Neural network terminology

one epoch: one forward pass and one backward pass of all the training examples

batch: the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll need.

number of iterations: number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes).

Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.



CSV "Comma Separeted values" file

Diabetes.py

Separa Dados de Treinamento (80% - 606) e Validação (20% - 152)

Definição da RN/

Compila o Model

Treina (FIT) a RN

Plota a evolução da Prec Função Custo

Apresenta os Dados de

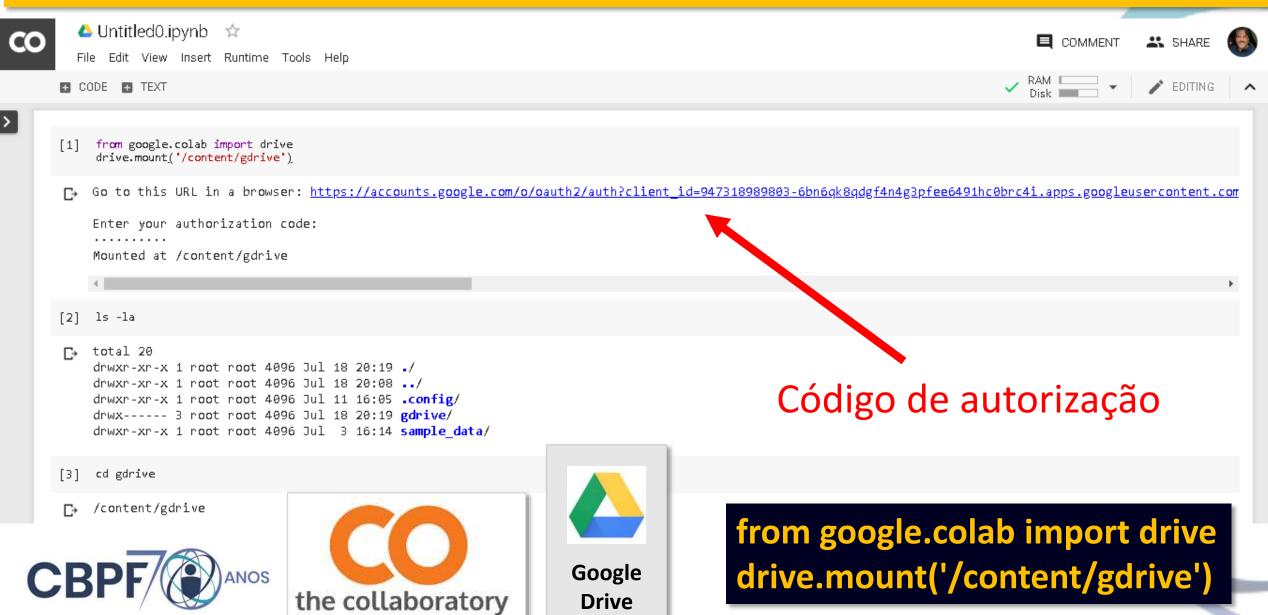
Grupo de Teste

pregnancies	glucose	diastolic	triceps	insulin	bmi	dpf	age	diabetes
1	106	76	0	0	37.5	0.197	26	0
6	190	92	0	0	35.5	0.278	66	1
2	88	58	26	16	28.4	0.766	22	0
9	170	74	31	0	44.0	0.403	43	1
9	89	62	0	0	22.5	0.142	33	0
10	101	76	48	180	32.9	0.171	63	0
2	122	70	27	0	36.8	0.340	27	0
5	121	72	23	112	26.2	0.245	30	0
1	126	60	0	0	30.1	0.349	47	1
1	93	70	31	0	30.4	0.315	23	0

Camada de Saída: 1 neurônio

1. Acesse o link google drive para compartilhamento:

https://drive.google.com/drive/folders/1Vodmo0ayZ0tdx_DJEb5n2hFudxJF0ay9?usp=sharing



EXEMPLO 2

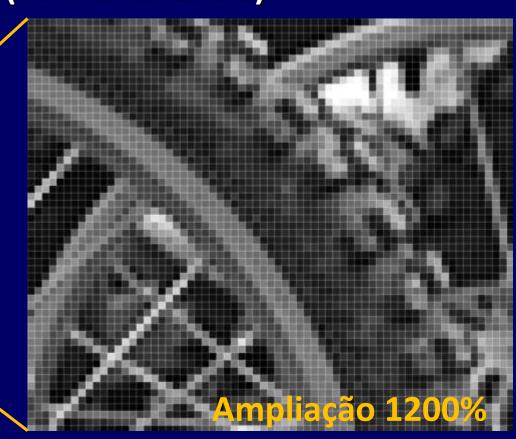
RECONHECIMENTO DE CARACTERES MANUSCRITOS

REDE NEURAL MULTI-LAYER

Sobre Imagem Digital

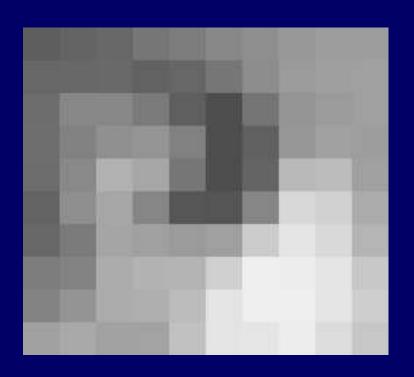
- Imagem é um sinal digital (2D) de suporte a informação (Teoria de Sinais)
- Uma imagem digital é uma função discreta de posição (2D ou 3D, tempo e banda espectral) e níveis de cinza. Cada coordenada da imagem contem uma informação de luminância (ou crominância).

Imagem digital (KODAK - Free)



Sobre Imagem Digital

Uma imagem digital pode ser vista como uma matriz de níveis de cinza, ou valores de intensidade luminosa.



 94
 100
 104
 119
 125
 136
 143
 153
 157
 158

 103
 104
 106
 98
 103
 119
 141
 155
 159
 160

 109
 136
 136
 123
 95
 78
 117
 149
 155
 160

 110
 130
 144
 149
 129
 78
 97
 151
 161
 158

 109
 137
 178
 167
 119
 78
 101
 185
 188
 161

 100
 143
 167
 134
 87
 85
 134
 216
 209
 172

 104
 123
 166
 161
 155
 160
 205
 229
 218
 181

 125
 131
 172
 179
 180
 208
 238
 237
 228
 200

 131
 148
 172
 175
 188
 228
 239
 238
 228
 206

 161
 169
 162
 163
 193
 228
 230
 237

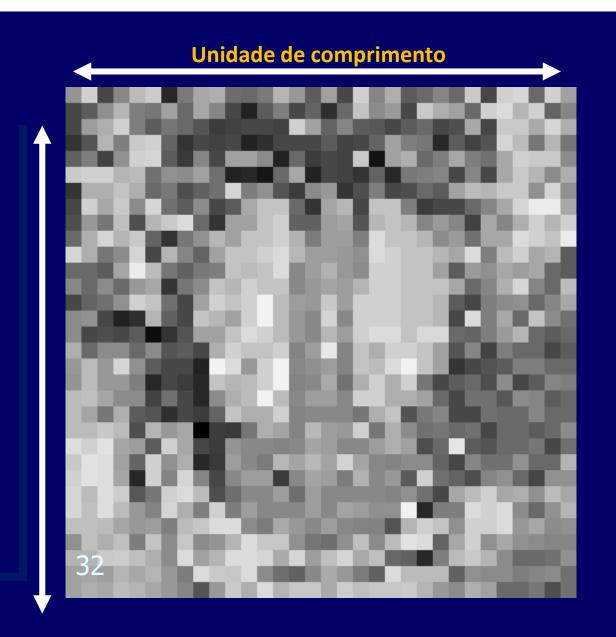
Ampliação

Valores de intensidade luminosa (8 bits)
Níveis de Cinza

Sobre Imagem Digital

Resolução da Imagem

- DPI "dots per inch"
 - Scanners (variável)
- Número de pixels
 - Vídeo (fixo)
- Exemplo simples
 - Foto de 5x5 cm 2x2 in.
 - Resolução: 300 dpi
 - Tamanho: 600x600 pixels
 - **Filme Fotográfico:** 5000x5000 dpi



THE MNIST DATABASE

of handwritten digits

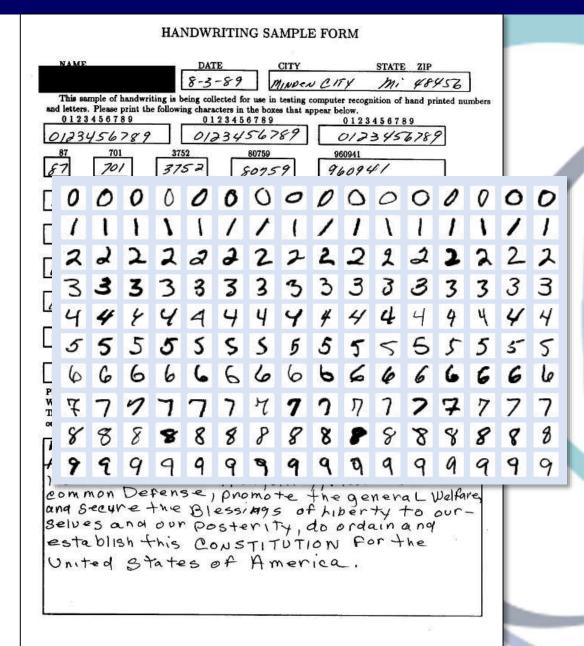
Yann LeCun, Courant Institute, NYU
Corinna Cortes, Google Labs, New York
Christopher J.C. Burges, Microsoft Research, Redmond

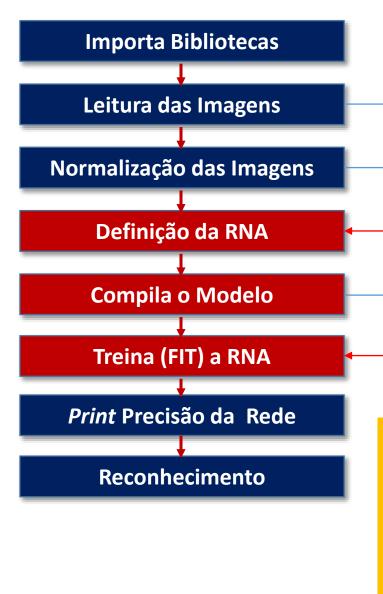
É um Banco de Dados composto de dígitos escritos por estudantes do ensino médio e funcionários da agência governamental americana: "US Census Bureau"

A base MNIST contem:

- 60,000 imagens para treino
- 10,000 imagens testes

http://yann.lecun.com/exdb/mnist/





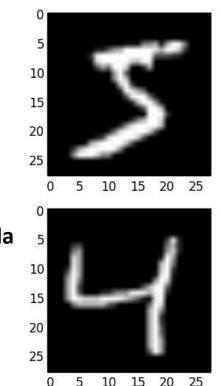
Treinamento (60000)
Validação/Teste (10000)

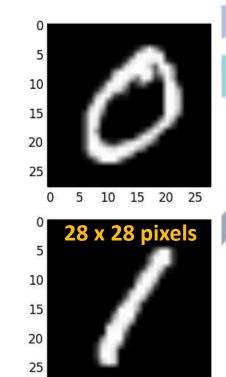
Níveis de Cinza [0, 1.0]

Define as propriedades de cada camada

Apresenta o resumo do Modelo

Epoch, Batch, Dados de Treinamento e Validação





5 10 15 20 25

- 1ª Camada: 784 neurônios
- 2ª Camada: 392 neurônios
- 3ª Camada: 196 neurônios
 - Saída: 10 neurônios

model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(392, activation='relu'))
model.add(Dense(196, activation = 'relu'))
model.add(Dense(10, activation='softmax'))

EXEMPLO 3

RECONHECIMENTO DE CARACTERES MANUSCRITOS

REDE NEURAL CNN CONVOLUTION NEURAL NETWORK

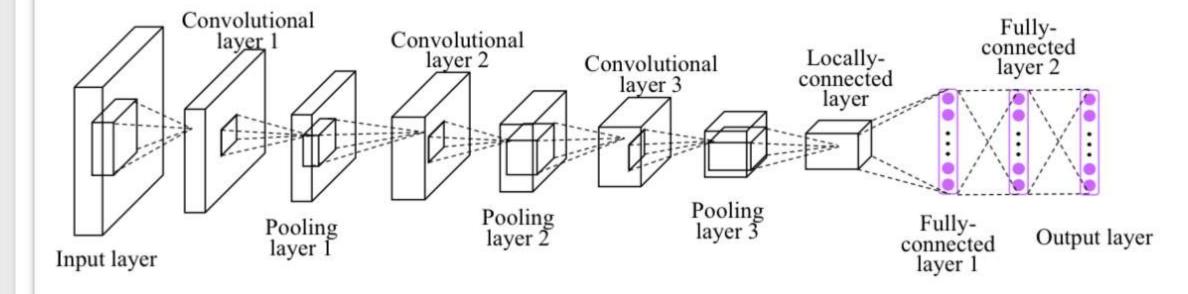
File Edit View Insert Runtime Tools Help



https://colab.research.google.com/drive/1_mb0zsvIWu8OvFNYS5X-2IaRtjdItE0u

- CNN

Overview

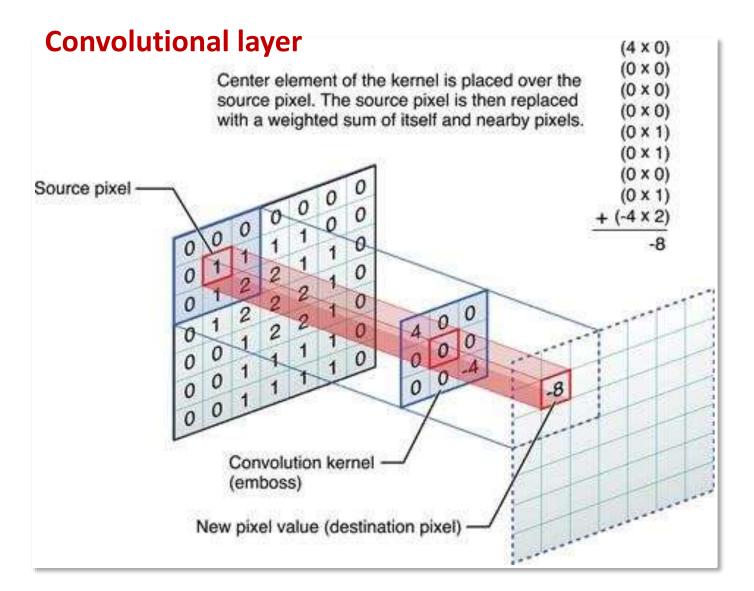


Goal

The Goal of this notebook is to present a simple example of cnn running with keras (Tensorflow backend) in the colab interface. We also present some example of results of a simple application of handwritten digit classification.

>





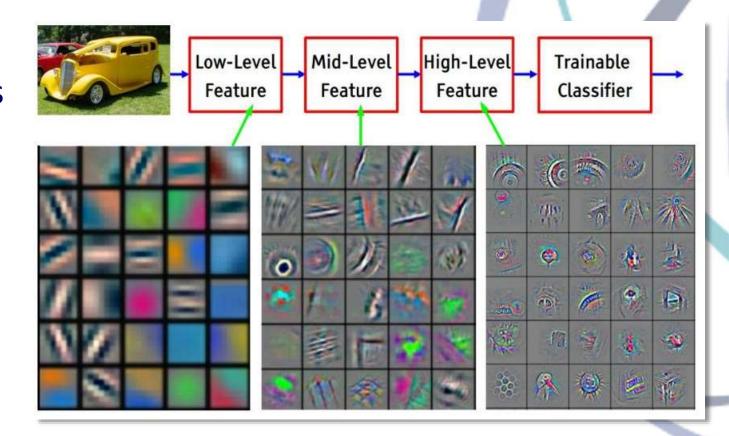


Example of MaxPool with 2x2 and a stride of 2

Convolutional Neural Networks

What makes CNNs so special?

- Based on mammal visual cortex
- Extract surrounding-depending high-order features.
- Specially useful for:
 - Images
 - Time-dependent parameters
 Speech recognition
 Signal analysis



Trabalhos do Grupo

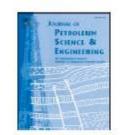
dx.doi.org/10.7437/NT2236-7640/2016.01.004 Notas Técnicas, v. 6, n. 1, p. 28–51, 2016 Journal of Petroleum Science and Engineering 170 (2018) 315-330

Journal of Petroleum Science and Engineering 179 (2019) 474-503

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol



nd Engineering

/locate/petrol

gs using deep lian pre-salt carbonate

and Marrie Duanta Compile

©ESO 2019

A deep residual convolutional neural network for automatic lithological facies identification in Brazilian pre-salt oilfield wellbore image logs

Manuel Blanco Valentín^{a,*}, Clécio R. Bom^{a,b}, Juliana M. Coelho^a, Maury Duarte Correia^c, Márcio P. de Albuquerque^a, Marcelo P. de Albuquerque^a, Elisângela L. Faria^a

- a Coordenação de Atividades Técnicas, Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Xavier Sigaud, 150, Ed. César Lattes, Urca, Rio de Janeiro, Brazil
- b Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rodovia Márcio Covas, Lote J2, Quadra J, Itaguaí, Brazil

Lens Finding Challenge

ruz^{3,4,5,**}, Fabio Bellagamba^{1,2}, Clécio R. Bom^{6,7}, ew Davies²², Etienne Decencière¹⁰, Rémi Flamary¹¹, Marc Huertas-Company¹⁴, Neal Jackson¹³, Colin

Jacobs²³, Eric Jullo¹⁵, Jean-Paul Kneib¹², Léon V. E. Koopmans¹⁶, François Lanusse¹⁷, Chun-Liang Li¹⁸, Quanbin Ma¹⁸, Martin Makler⁷, Nan Li¹⁹, Matthew Lightman¹⁵, Carlo Enrico Petrillo¹⁶, Stephen Serjeant²², Christoph Schäfer¹², Alessandro Sonnenfeld²¹, Amit Tagore¹³, Crescenzo Tortora¹⁶, Diego Tuccillo^{10, 14}, Manuel B. Valentín⁷, Santiago Velasco-Forero¹⁰, Gijs A. Verdoes Kleijn¹⁶, and Georgios Vernardos¹⁶

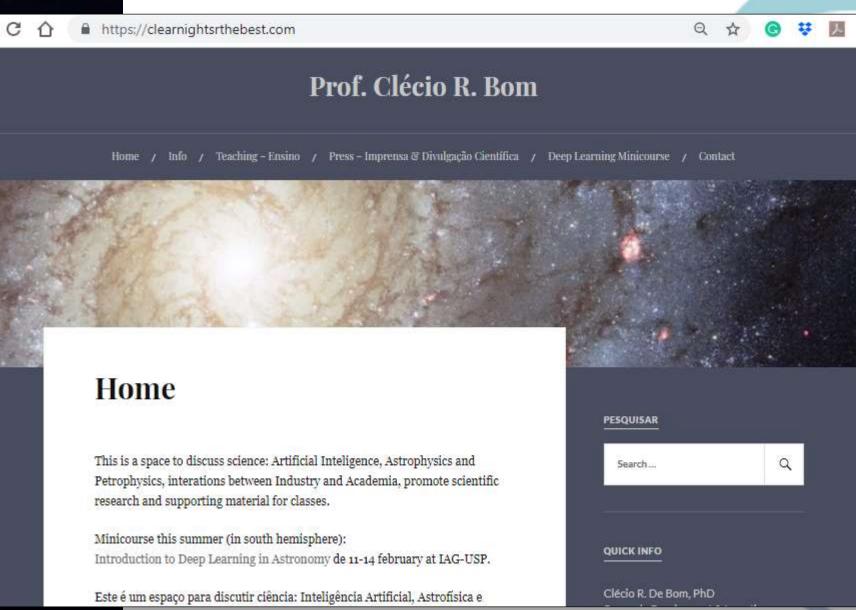
Centro de Pesquisas e Desenvolvimento Leopoldo A PETROBRAS, Av. Horáci

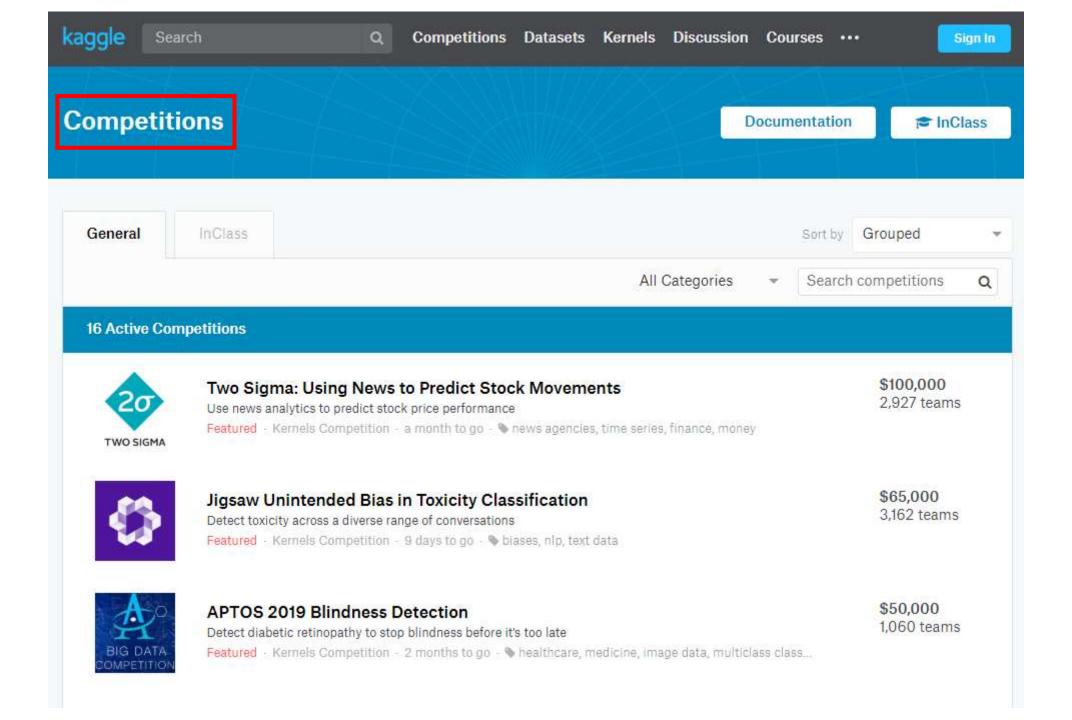
950, Cidade Universi Rio de Janeiro, RJ. CEP 219 Submetido: 01/01/2016 Ac

^c Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES - PETROBRAS), Av. Horádo Macedo, 950, Cidade Universitária, Rio de Janetro, Brazil

Trabalhos do Grupo

https://clearnightsrthebest.com/

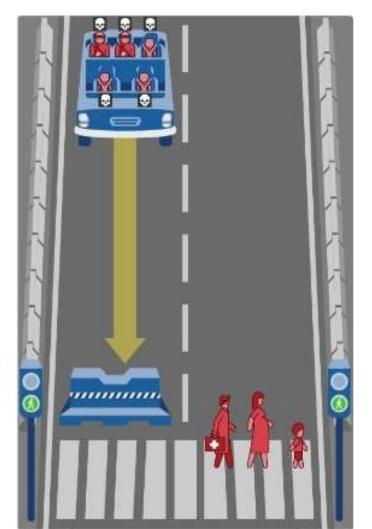




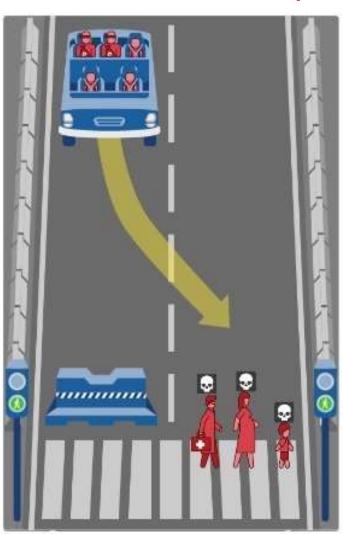
IA e as decisões éticas

IA e as decisões éticas

A máquina moral



http://moralmachine.mit.edu/hl/pt



LIDARS

High-precision laser sensors that detect fixed and moving objects

LONG-RANGE RADARS

Detect vehicles and measure velocity

SHORT-RANGE RADARS

Detect objects around the vehicle

https://hcai.mit.edu/avt/

XII ESCOLA DO CBPF

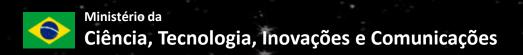
22 de julho a 02 de agosto de 2019

Inteligência Artificial utilizando Deep Learning e Aplicações em Física

Márcio Portes de Albuquerque (CBPF)

Clécio R. De Bom (CBPF/CEFET-RJ)

Elisangela L. Faria (CBPF)



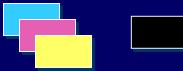
Sobre Imagem Digital (CORES)

- A cor é definida como uma "sensação" na percepção humana.
- Do ponto de vista da Física, a cor é o resultado da incidência de uma onda eletromagnética na retina. Esta tem um comprimento de onda entre 400 a 700nm.

SISTEMA DE CORES

√ RGB (Red Green Blue)

É um Sistema Aditivo/Emissão. A proporção de cada uma das cores primarias (*Red, Green and Blue*) são a base para todas as outras cores, quando somadas. A implementação é feita por meio de circuitos eletrônicos (e.g. em televisão, câmeras, sistemas de computação gráfica, etc.).



É um Sistema de cores Subtrativo/Absorção. Utilizado normalmente por dispositivos de impressão e/ou fotográficos. Estes sistemas incluem normalmente uma 4a. cor (preto), para reduzir "custos" para produzir todas as cores.

Cores primárias de emissão

Cores primárias de absorção

Sobre Imagem Digital (CORES)

Escala de 0 a 255

R = 234

G=212

 $\mathsf{B}=20$

Amarelo

Escala em %

C = 10%

M = 11% K=1%

Y = 94%

R = 83

G = 12

 $\mathsf{B} = 64$

ROXO

C = 57%

M = 98% K=32%

Y = 22%

R = 20

G = 202

B = 114

Verde Aqua

C = 77%

M = 0%

Y = 71%

K=0%

HSL — OUTRO MODELO: Hue (Matiz), Saturação, Luminosidade