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ResNet as an Emsemble of shallow nets
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(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of
Equation (1). When we expand this formulation to Equation (6), we obtain an unraveled view of a
3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that
residual networks have O(2") implicit paths
doubles the number of paths.
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(a) Deleting f2 from unraveled view (b} Ordinary feedforward network

Figure 2: Deleting a layer in residual networks at test time (a) is equivalent to zeroing half of the
paths. In ordinary feed-forward networks (b) such as VGG or AlexNet, deleting individual layers
alters the only viable path from input to output.
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of Relatively Shallow Networks. arXiv:1605.06431v2,2016.



ResNet as an Emsemble of shallow nets

Test error when dropping any single block
from residual network vs. VGG on CIFAR-10
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Figure 3: Deleting individual layers from VGG |
and a residual network on CIFAR-10. VGG per- |
formance drops to random chance when any one |
of its layers is deleted, but deleting individual
modules from residual networks has a minimal ¢
impact on performance. Removing downsam-
pling modules has a slightly higher impact.

A. Veit, M. Wilber and S. Belongie. Residual Networks Behave Like Ensembles
of Relatively Shallow Networks. arXiv:1605.06431v2,2016.



Recurrent Neural Nets
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Recurrent Neural Nets
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Recurrent Neural Nets

Acima de tudo, é fundamental ressaltar
que a percepgéo das dificuldades deve
passar por modificagées
independentemente dos niveis de
motivagdo departamental.
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Recurrent Neural Nets

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
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