
Centro Brasileiro de Pesquisas Físicas

Ministério da Ciência, Tecnologia e Inovações

Redes Neurais profundas e aplicações 

Deep Learning

Clécio Roque De Bom – debom@cbpf.br

clearnightsrthebest.com



Going Deeper with Convolutions - AKA - Inception

Bigger size typically means a larger number of  parameters, which makes the enlarged network 
more prone to overfitting, especially if  the number of  labeled examples in the training set is 
limited. (…)The other drawback of  uniformly increased network size is the dramatically increased 
use of  computational resources. For example, in a deep vision network, if  two convolutional layers are 
chained, any uniform increase in the number of  their filters results in a quadratic increase of  
computation. If  the added capacity is used inefficiently (for example, if  most weights end up to be 
close to zero), then much of  the computation is wasted.(…). 

storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

Szegedy, Christian, et al. "Going deeper with 

convolutions." Proceedings of  the IEEE conference on computer 

vision and pattern recognition. 2015.



Going Deeper with Convolutions - AKA - Inception

A fundamental way of  solving both of  these issues would be to introduce sparsity and replace the fully 
connected layers by the sparse ones, even inside the convolutions. Besides mimicking biological 
systems, this would also have the advantage of  firmer theoretical underpinnings due to the groundbreaking 
work of  Arora et al. [2]. Their main result states that if  the probability distribution of  the dataset is 
representable by a large, very sparse deep neural network, then the optimal network topology can 
be constructed layer after layer by analyzing the correlation statistics of  the preceding layer 
activations and clustering neurons with highly correlated outputs.

storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

Szegedy, Christian, et al. "Going deeper with 

convolutions." Proceedings of  the IEEE conference on computer 

vision and pattern recognition. 2015.



The Main (Inception) Idea...

GoogLeNet (2014)

The idea is that you don’t need to know in advance if  it was better to do, for example, a 3×3 then 
a 5×5.  Instead, just do all the convolutions and let the model pick what’s best.  Additionally, this 
architecture allows the model to recover both local feature via smaller convolutions and high 
abstracted features with larger convolutions.



The Main (Inception) Idea...

GoogLeNet (2014)

5 million (V1) and 23 million (V3)

3x3 convolutions could be further deconstructed into 

successive 3x1 and 1x3 convolutions.

Generalizing this insight, we can more efficiently compute an n×n convolution as a 1×n 
convolution followed by a n×1 convolution..

https://www.jeremyjordan.me/convnet-architectures/



What to choose?



We still have millions of parameters to fit!!!! We still need some ideas to prevent overfitting

ResNet Block 

The author’s hypothesis is that it is easy to optimize 
the residual mapping function F(x) than to optimize 
the original, unreferenced mapping .

If the identity mapping is optimal, We can easily push the 
residuals to zero (F(x) = 0) than to fit an identity mapping (x, 
input=output) by a stack of  non-linear layers. H(x) = F(x)+x

It also put a new light on the vanishing gradient problem...



Residual Neural Networks



Residual Neural Networks

• Won 1st place in the ILSVRC 2015 classification competition with top-5 error rate of  3.57% 
(An ensemble model)

• Won the 1st place in ILSVRC and COCO 2015 competition in ImageNet Detection, 
ImageNet localization, Coco detection and Coco segmentation.

• Replacing VGG-16 layers in Faster R-CNN with ResNet-101. They observed a relative 
improvements of  28%

• Efficiently trained networks with 100 layers and 1000 layers also.

• ResNet Network Converges faster compared to plain counterpart of  it.

• Identity vs Projection shortcuts. Very small incremental gains using projection shortcuts in all the 
layers. So all ResNet blocks use only Identity shortcuts with Projections shortcuts used only when 
the dimensions changes.



Residual Neural Networks



Resnext

• Similar to Inception. However, the outputs of different paths are merged by
adding them together, in the Inception they are concatenated. 

• In the Inception paper each path is different (1x1, 3x3 and 5x5 convolution)  
and in the ResNext all paths share the same topology.

S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He. Aggregated Residual Transformations for Deep Neural 

Networks. arXiv preprint arXiv:1611.05431v1,2016.



Resnext

S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He. Aggregated Residual Transformations for Deep Neural 

Networks. arXiv preprint arXiv:1611.05431v1,2016.

• Cardinality: the number of independent paths, to provide a new way of adjusting the
model capacity. 

• Experiments show that accuracy can be gained more efficiently by increasing the
cardinality than by going deeper or wider.

• Less Hyper-parameters than Inception



Densely Connected Convolutional Networks

Huang et al.  argue that this architecture encourages feature reuse, making the network highly parameter-
efficient. 

Concatenating feature maps can preserve them all and increase the variance of the outputs.

G. Huang, Z. Liu, K. Q. Weinberger and L. Maaten. Densely Connected

Convolutional Networks. arXiv:1608.06993v3,2016.



How to Implement it?

https://keras.io/api/layers/regularizers/



How to Implement a ResNet ?

import numpy as np

import pandas as pd

import tensorflow as tf

import h5py

import os

#from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import roc_curve, auc

import matplotlib.pyplot as plt

res_net = tf.keras.applications.ResNet50(input_shape = (X.shape[1:]), 

include_top = False, weights='imagenet')

flat = tf.keras.layers.Flatten()(res_net.output)

y_hat = tf.keras.layers.Dense(1, activation = "sigmoid")(flat)

model = tf.keras.models.Model(res_net.input, y_hat)

https://keras.io/api/applications/



How to Implement a ResNet ?

https://keras.io/api/applications/

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

Xception 88 MB 0.790 0.945 22,910,480 126

VGG16 528 MB 0.713 0.901 138,357,544 23

VGG19 549 MB 0.713 0.900 143,667,240 26

ResNet50 98 MB 0.749 0.921 25,636,712 -

ResNet101 171 MB 0.764 0.928 44,707,176 -

ResNet152 232 MB 0.766 0.931 60,419,944 -

ResNet50V2 98 MB 0.760 0.930 25,613,800 -

ResNet101V2 171 MB 0.772 0.938 44,675,560 -

ResNet152V2 232 MB 0.780 0.942 60,380,648 -

InceptionV3 92 MB 0.779 0.937 23,851,784 159

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

MobileNet 16 MB 0.704 0.895 4,253,864 88

MobileNetV2 14 MB 0.713 0.901 3,538,984 88

DenseNet121 33 MB 0.750 0.923 8,062,504 121

DenseNet169 57 MB 0.762 0.932 14,307,880 169

DenseNet201 80 MB 0.773 0.936 20,242,984 201

NASNetMobile 23 MB 0.744 0.919 5,326,716 -

NASNetLarge 343 MB 0.825 0.960 88,949,818 -

EfficientNetB0 29 MB - - 5,330,571 -

EfficientNetB1 31 MB - - 7,856,239 -

EfficientNetB2 36 MB - - 9,177,569 -

EfficientNetB3 48 MB - - 12,320,535 -

EfficientNetB4 75 MB - - 19,466,823 -

EfficientNetB5 118 MB - - 30,562,527 -

EfficientNetB6 166 MB - - 43,265,143 -

EfficientNetB7 256 MB - - 66,658,687 -

https://keras.io/api/applications/xception
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/vgg/#vgg19-function
https://keras.io/api/applications/resnet/#resnet50-function
https://keras.io/api/applications/resnet/#resnet101-function
https://keras.io/api/applications/resnet/#resnet152-function
https://keras.io/api/applications/resnet/#resnet50v2-function
https://keras.io/api/applications/resnet/#resnet101v2-function
https://keras.io/api/applications/resnet/#resnet152v2-function
https://keras.io/api/applications/inceptionv3
https://keras.io/api/applications/inceptionresnetv2
https://keras.io/api/applications/mobilenet
https://keras.io/api/applications/mobilenet/#mobilenetv2-function
https://keras.io/api/applications/densenet/#densenet121-function
https://keras.io/api/applications/densenet/#densenet169-function
https://keras.io/api/applications/densenet/#densenet201-function
https://keras.io/api/applications/nasnet/#nasnetmobile-function
https://keras.io/api/applications/nasnet/#nasnetlarge-function
https://keras.io/api/applications/efficientnet/#efficientnetb0-function
https://keras.io/api/applications/efficientnet/#efficientnetb1-function
https://keras.io/api/applications/efficientnet/#efficientnetb2-function
https://keras.io/api/applications/efficientnet/#efficientnetb3-function
https://keras.io/api/applications/efficientnet/#efficientnetb4-function
https://keras.io/api/applications/efficientnet/#efficientnetb5-function
https://keras.io/api/applications/efficientnet/#efficientnetb6-function
https://keras.io/api/applications/efficientnet/#efficientnetb7-function


How to Implement Extract Features?

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import preprocess_input

import numpy as np

model = VGG16(weights='imagenet', include_top=False)

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

features = model.predict(x)



How to Implement Extract Features?

from tensorflow.keras.applications.vgg19 import VGG19

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg19 import preprocess_input

from tensorflow.keras.models import Model

import numpy as np

base_model = VGG19(weights='imagenet')

model = Model(inputs=base_model.input, 

outputs=base_model.get_layer('block4_pool').output)

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

block4_pool_features = model.predict(x)



Centro Brasileiro de Pesquisas Físicas

Ministério da Ciência, Tecnologia e Inovações

Redes Neurais profundas e aplicações 

Deep Learning

Clécio Roque De Bom – debom@cbpf.br

clearnightsrthebest.com


