Ministério da Ciéncia, Tecnologia e Inovacoes

Regularization

What “s for? Also prevents overfitting. Adds a Contrain.

Consider a simple Loss like residual sum of squares:

n P 2
RSS = Z Y; — Po — Z .)Jj,r,;j
i=1 =1
One can add a penalty:
2

L P P P
S {vi—60—-3 Biwii | +2Y B2 =Rss+rY 52
i=1 j=I j=1 j=1

This is known as L2 regularization

https:/towardsdatascience.com/regularization-in-machine-learning-
76441ddcf99a

Regularization

What “s for? Also prevents overfitting. Adds a Contrain.

Consider a simple Loss like residual sum of squares:

n P 2
RSS = Z UY; — ,‘3{]. — Z :.fj.'-i':?;j'
i=1 =1
One can add a penalty:
2

n P P P
S {wi—Bo—) Bijwi; | +A) BF=RSS+A) 57
i=1 F=1 g=1 =1

This is known as L2 regularization

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

Warning: The coefficients
are scale equivariants
with the inputs, this
proprierty is lost when
regularizing, so one

should standardize the
inputs.

Regularization

What “s for? Also prevents overfitting. Adds a Contrain.

Consider a simple Loss like residual sum of squares:

2
RSS = z Yi — Po — IZ Bixi;
j=1

=1

One can add a penalty:

9
n

Z Y; — Bo — i % + A zp: EA RSS + A 21,: 135
1=1 7=1 fo=]

=1

This is known as L1 regularization

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

Regularization

B2 A 32‘

B B

L1

: L2
Sparsity

It potentially reduces the deviations from different training sets.

Credit : An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
The above image shows the constrain

Initialization

O initialization, all derivatives are the same ..., no matter the input is like.

Initialization

Example, 3 layers with ReLu activation function and sigmoid for the output layer

Model with Zeros initialization

15
10 - * Wi, o
a2 2 SN
05 4 ” .'. ' ". @
oY %
~ 00 4 e .¢ : & ‘.".
€. 3 N
= | ‘. Es - LY
0.5 ..'s ‘-..’ o 2 '; :{
-10 A '.:’ .. .:.$~:
a 5—1 5 1.0 05 0.0 05 10 15
x1

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26¢c649eb3b78

Random Initialization

model.add(Dense(64, kernel_initializer="random_uniform’,
Random

bias_initializer='zeros"))

a) If weights are initialized with very high values the term np.dot(w,x)+b becomes
significantly higher and if an activation function like sigmoid() is applied, the
function maps its value near to 1 where the slope of gradient changes slowly
and learning takes a lot of time.

b) If weights are initialized with low values it gets mapped to 0, where the
case is the same as above.

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26¢c649eb3b78

Random Initialization

model.add(Dense(64, kernel_initializer="random_uniform’,
Random

bias_initializer='zeros"))

a) If weights are initialized with very high values the term np.dot(w,x)+b becomes
significantly higher and if an activation function like sigmoid() is applied, the
function maps its value near to 1 where the slope of gradient changes slowly
and learning takes a lot of time.

b) If weights are initialized with low values it gets mapped to 0, where the
case is the same as above.

RelLU and LeakyRelLu are your friends

Random Initialization — going deeper

Xavier Initialization

The normalization factor may therefore be important when
initializing deep networks because of the multiplicative ef-
fect through layers, and we suggest the following initializa-
tion procedure to approximately satisfy our objectives of
maintaining activation variances and back-propagated gra-
dients variance as one moves up or down the network. We
call it the normalized initialization:

V6 V6]
VI F i1 Jng +

W ~U

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010.

Random Initialization — going deeper

Xavier Initialization

100 T T ’_.7
‘—Laycr 1
Layer 2
‘—Laycr 3
501 _ —Layer 4|
' ‘ Layer 5
0 & . : -
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
IO T T T l T T T I
r':}‘;h‘lll —Layer 1
H'“, J 'I'ﬂ Layer 2
"I ﬂh.‘ | | —Layer 3
5 ‘)]H }ﬂf"l' —Laver 4
B 1 ' Q‘ Aaye
Wk “\, Layer 5
iyt h{ll
". 3] l\\t’| \l“
0 MMM 2 I I I 'I"Jﬁmu\um.._ﬂx__._

025 02 -015 01 005 0 005 01 015 02 025
Backpropagated gradients
Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

15 T T T T T T T T I
—Layer 1
Layer 2
10 —Layer 3
(\ —Layer 4
5 [Layer 5|

,Jﬁ
B et e e S

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

2 T T T T T T T T T
— Layer 1
1.5 Layer 2
B AN —Layer 3
u"'f’,". nu.,..&.l.“ B ‘Y‘
1 it b Layer 4
,aylk#f n‘!.*" L Layer 5
0.5 o g,
oy i - o,
0 _._“-_-""’rm 1 1 L -M'.""‘.a-._h

X | | | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth

international conference on artificial intelligence and statistics. 2010.

Random Initialization — going deeper

Xavier Initialization

Glorot, Xavier, and Yoshua
Bengio. "Understanding the
difficulty of training deep
feedforward neural networks."
Proceedings of the thirteenth
international conference on
artificial intelligence and
statistics. 2010.

005 AANAAR N Al WA A AW

]
5 — Layer 1|
"g W Layer2)
? 05 - — Layer 3|
\
,'ED NN A~~~ T Layer 4
5]
=

0.05F AR A\ AN AN \f\f \ NV VYNNI AN Layer 5
| | 1 | 1 | 1 L

0 10 20 30 40 50 60 70 80 90
Epochs of 20k mini-batch updates

Weights gradients

0 10 20 30 40 50 60 70 80 90
Epochs of 20k mini-batch updates

Figure 9: Standard deviation intervals of the weights gradi-
ents with hyperbolic tangents with standard initialization
(top) and normalized (bottom) during training. We see
that the normalization allows to keep the same variance
of the weights gradient across layers, during training (top:
smaller variance for higher layers).

A little bit of historical Nets

LeNet-5 (| 9‘@))

Yann Lecun's LeNet-5 model was developed in 1998 to identify handwritten (D
digits for zip code recognition in the postal service. This pioneering model __
largely introduced the convolutional neural network as we know it today. Y

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32%32 6@28x28

S2: f. maps
B@14x14

‘ Full coanection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

A little bit of historical Nets ...
=)
GV,

_ >/

The subsampling layers use a form of average pooling.

Parameters: 60,000
=Y

C3: f. maps 16@10x10

INPUT gég ;ggguge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5; layer .
6@14x14 120 o F6: layer QUTPUT

‘ Full coanection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

A little bit of historical Nets ...

AlexNet was developed by Alex Krizhevsky et al. in 2012 to compete in
the ImageNet competition. The general architecture 1s quite similar to
LeNet-5, although this model is considerably larger. The success of this
model (which took first place in the 2012 ImageNet competition)
convinced a lot of the computer vision community to take a serious
look at deep learning for computer vision tasks.

13 13 13 \
\ ~—
R \ 5& = =l 3@,; 5 S BQ: e \: 3
- g > - 27 N+ - 13 3 - 13 Jﬁi

55 384 384 256

13 dense dense

\ '

\|/

256 Max
Max Max pooling
o6 pooling pooling

4096 4096

Stride
of 4

\ 55
N

AlexNet — 60 Million parameters!!!!

A little bit of historical Nets ...

650,000 neurons, consists of five convolutional layers, some of which are

followed by max-pooling layers, and three globally-connected layers with a final
1000-way softmax. It was trained on two NVIDIA GPUs for about a week.

Stride
of 4

96

Max
pooling

27

b N
27 +
3

256

-

Max

13

13

384

13

256

dense

pooling

Max
pooling

dense

4096

A little bit of historical Nets ...

VGG-16 (2014)— 138 Million parameters!!!!

224 %224 x3 224x224x64

|% 56 X 256
28x28x512 r{”2><7><:312
Va1 1x1x4096 1x1x1000

@ convolution+RelLU

tﬂ max pooling
fully connected+ReLU

[=]

https:/ /arxiv.org/abs/1409.1556

| softmax

can we do WIitn suchn b D EeSl-rItted and
Trained?) models today?

Unsupervised learning %

Transfer Learning
™
=) /’"‘
3 5 3 =
£ % 5
1 2
EE A
E T
A—‘
A
=

Ben Kenobi - Old and Wise
lots of optimized parameters

Ministério da Ciéncia, Tecnologia e Inovacoes

