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Regularization

What “s for? Also prevents overfitting. Adds a Contrain.

Consider a simple Loss like residual sum of squares:
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This is known as L2 regularization

https:/towardsdatascience.com/regularization-in-machine-learning-
76441ddcf99a
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This is known as L2 regularization

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

Warning: The coefficients
are scale equivariants
with the inputs, this
proprierty is lost when
regularizing, so one

should standardize the
inputs.




Regularization

What “s for? Also prevents overfitting. Adds a Contrain.

Consider a simple Loss like residual sum of squares:
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One can add a penalty:
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This is known as L1 regularization

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a



Regularization
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It potentially reduces the deviations from different training sets.

Credit : An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
The above image shows the constrain



Initialization

O initialization, all derivatives are the same ..., no matter the input is like.




Initialization

Example, 3 layers with ReLu activation function and sigmoid for the output layer

Model with Zeros initialization
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https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26¢c649eb3b78



Random Initialization

model.add(Dense(64, kernel_initializer="random_uniform’,
Random

bias_initializer='zeros"))

a) If weights are initialized with very high values the term np.dot(w,x)+b becomes
significantly higher and if an activation function like sigmoid() is applied, the
function maps its value near to 1 where the slope of gradient changes slowly
and learning takes a lot of time.

b) If weights are initialized with low values it gets mapped to 0, where the
case is the same as above.

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26¢c649eb3b78



Random Initialization

model.add(Dense(64, kernel_initializer="random_uniform’,
Random

bias_initializer='zeros"))

a) If weights are initialized with very high values the term np.dot(w,x)+b becomes
significantly higher and if an activation function like sigmoid() is applied, the
function maps its value near to 1 where the slope of gradient changes slowly
and learning takes a lot of time.

b) If weights are initialized with low values it gets mapped to 0, where the
case is the same as above.

RelLU and LeakyRelLu are your friends



Random Initialization — going deeper

Xavier Initialization

The normalization factor may therefore be important when
initializing deep networks because of the multiplicative ef-
fect through layers, and we suggest the following initializa-
tion procedure to approximately satisfy our objectives of
maintaining activation variances and back-propagated gra-
dients variance as one moves up or down the network. We
call it the normalized initialization:
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Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010.



Random Initialization — going deeper

Xavier Initialization
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Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.
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Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth

international conference on artificial intelligence and statistics. 2010.



Random Initialization — going deeper

Xavier Initialization

Glorot, Xavier, and Yoshua
Bengio. "Understanding the
difficulty of training deep
feedforward neural networks."
Proceedings of the thirteenth
international conference on
artificial intelligence and
statistics. 2010.
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Figure 9: Standard deviation intervals of the weights gradi-
ents with hyperbolic tangents with standard initialization
(top) and normalized (bottom) during training. We see
that the normalization allows to keep the same variance
of the weights gradient across layers, during training (top:
smaller variance for higher layers).



A little bit of historical Nets

LeNet-5 (| 9‘@ ))

Yann Lecun's LeNet-5 model was developed in 1998 to identify handwritten (D
digits for zip code recognition in the postal service. This pioneering model __
largely introduced the convolutional neural network as we know it today. Y
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A little bit of historical Nets ...
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The subsampling layers use a form of average pooling.

Parameters: 60,000
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A little bit of historical Nets ...

AlexNet was developed by Alex Krizhevsky et al. in 2012 to compete in
the ImageNet competition. The general architecture 1s quite similar to
LeNet-5, although this model is considerably larger. The success of this
model (which took first place in the 2012 ImageNet competition)
convinced a lot of the computer vision community to take a serious
look at deep learning for computer vision tasks.
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AlexNet — 60 Million parameters!!!!

A little bit of historical Nets ...

650,000 neurons, consists of five convolutional layers, some of which are

followed by max-pooling layers, and three globally-connected layers with a final
1000-way softmax. It was trained on two NVIDIA GPUs for about a week.
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A little bit of historical Nets ...

VGG-16 (2014)— 138 Million parameters!!!!
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https:/ /arxiv.org/abs/1409.1556
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can we do WIitn suchn b D EeSl-rItted and
Trained?) models today?

Unsupervised learning %
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lots of optimized parameters
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