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# pad_left, pad_right, pad_top, pad_bottom denote the pixel

# displacement. Set one of them to the desired value and rest to ©
shape = [batch, height, width, channels]

x = tf.placeholder(dtype = tf.float32, shape = shape)

# We use two functions to get our desired augmentation

x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height +
pad_bottom + pad_top, width + pad_right + pad_left)

output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right,
height, width)
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https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-
have-limited-data-part-2/
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Table 2. Recognition results (accuracy and standard deviation) using different DA
schemes for the Folio dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original (no flip) [19] 84.83 + 2.85 97.67 + 1.60 | 89.75 + 1.74 97.63 t 1.84
Original (Hip) 87.50 = 2.62 O8.85 = 0.44 93.46 = 1.83 98.85 = 0.77
(a) Rotation 92.69 + 2.22 98.27 = 0.38 93.08 = 0.63 99.04 = 0.38
(b) Blur 88.65 £ 1.31 98.65 £ 0.74 | 93.59 £ 1.94 98.85 = 0.99
(¢) Contrast 92.69 = 0.44 99.04 = 0.38| 93.65 = 0.74 98.65 £ 0.74
(d) Scaling 8981 = 0.74 99.04 + 0.97(95.00 = 0.44 98.65 + 0.74
(e) IlHumination 93.46 £ 2,84 98.46 £ 0.63 | 94.23 = 099 99.42 = 0.38
(f) Projective 03.08 + 0.63 98.65 + 0.74 | 93.65 + 0.97 98.27 + 1.31
(a) + (b) 9250 + 1.15 98.27 + 0.38 | 93.27 £ 097 98.65 *+ 1.15
(a) + (¢) 95.00 £ 099 99.04 = 0.94| 9481 = 1.15 98.46 = 0.89
(a) + (d) 92.69 = 1.33 O8.46 = 0.63 93.65 = 0.74 O8.85 = 1.33
(a) + (e) 96.35 + 0.74 98.65 + 1.31 | 9442 + 0.74 98.85 + 1.33
(a) + (f) 92.69 = 0.77 97.50 = 0.97 93.65 = 1.31 98.65 = 0.74
(a) + (¢) + (e) 96.35 = 0.97 98.46 + 0.63 | 94.23 + 1.60 98.65 + 0.74

Data Augmentation for Plant Classification
Pornntiwa Pawara, Emmanuel Okafor, Lambert Schomaker, and
Marco Wiering
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data_augmentation = tf.keras.Sequential([
layers.experimental.preprocessing.RandomFlip( “horizontal_and_vertical"),
layers.experimental.preprocessing.RandomRotation(8.2),

1)

# Add the image to a batch
image = tf.expand_dims(image, 8)

plt.figure(figsize=(10, 18))

for i in range(9):
augmented_image = data_augmentation(image)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[8])
plt.axis("off")
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# Add
image

plt.fi
for i
augm
ax =
plt.
plt.
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image = load_img(IMAGE_PATH)
image = img_to_array(image)
image = np.expand_dims(image, axis=@)

imgAug = ImageDataGenerator(rotation_range=45, width_shift_range=0.1,
height_shift_range=0.1, zoom_range=0.25,
fill_mode="nearest', horizontal_flip=True)
imgGen = imgAug.flow(image, save_to_dir=0UTPUT_PATH,
save_format="jpg’', save_prefix="tZ27_")



Batch Size

Computational speed X Speed of convergence. Consider two parameters
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https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-
network



Accuracy

Batch Size

Shall we go for the biggest possible Batch? Consider Two architectures F2 and C1, in a LARGE dataset
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Bigger Batches, more memory it can converge in few epochs, smaller Batches more updates in the Net.

Computational speed X Speed of convergence

https://arxiv.org/abs/1609.04836
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Batch Size

Table 2: Performance of small-batch (SB) and large-batch (LLB) variants of ADAM on the 6 networks

listed in Table 1

Training Accuracy

Testing Accuracy

Network Name | SB LB SB LB

Fi 99.66% =+ 0.05% | 99.92% + 0.01% | 98.03% £ 0.07% | 97.81% £ 0.07%
F5 99.99% =+ 0.03% | 98.35% + 2.08% | 64.02% + 0.2% 59.45% + 1.05%
C 99.89% =+ 0.02% | 99.66% + 0.2% 80.04% £+ 0.12% | 77.26% 4 0.42%
Cs 99.99% + 0.04% | 99.99 £+ 0.01% 89.24% + 0.12% | 87.26% £+ 0.07%
C 99.56% =+ 0.44% | 99.88% 4+ 0.30% | 49.58% + 0.39% | 46.45% =+ 0.43%

99.10% + 1.23%

99.57% + 1.84%

63.08% + 0.5%

57.81% £ 0.17%

The stochastic gradient descent method and its variants are algorithms of choice for many Deep Learning tasks. These methods
operate in a small-batch regime wherein a fraction of the training data, usually 32--512 data points, is sampled to compute an
approximation to the gradient. It has been observed in practice that when using a larger batch there is a significant

degradation in the quality of the model, as measured by its ability to generalize. (https://arxiv.org/abs/1609.04836).

https://arxiv.org/abs/1609.04836
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Areasonable choice in the size of the learning rate depends on how curved the cost function is. You can think of gradient
descent as making a linear approximation to the cost function. If you move downhill along that approximate cost and If the

cost function is highly non-linear then the approximation will not work well.
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Batch Normalization

Input: Values of x over a mini-batch: B = {z1 ., };
Parameters to be learned: ~,

Output: {y; = BN, g(z;)}

1 m o
B < — E B // mini-batch mean
1 %
=1
1 m
0 — — E (z; — pB)? // mini-batch variance
m “
1=1
= i — ;
T; 4 I // normalize
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Yi — YZ; + B = BN, g(x;) // scale and shift




Batch Normalization

Activation Inputs Sigmoid Activation and Gradient

Normalization

“We presented an algorithm for constructing, training, and performing
inference with batch-normalized networks. The resulting networks can
be trained with saturating nonllnearltles are more tolerant to increased
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Batch Normalization

5.1.6 Recommendations and discussions

The MLP results suggest the following findings and recommendations:

— Use batch normalization if the convergence time is more important than absolute
accuracy (Fig. 9). Together with early stopping, it could significantly reduce training
time.

— But be aware of batch normalization’s training time increase (Table 4). Unless it can
be shown that it is helping converge faster during training, it may not be worth using it
for experiments. Each experiment will take significantly longer to complete. It may be
better to start with a standard network to run experiments faster, then switch to batch
normalization in a later phase.

—  Start with an adaptive optimizer (e.g. RMSProp). The experiments show that a non-
adaptive SGD optimizer can be fine-tuned to outperform an adaptive one, but that
comes at the cost of trying combinations of hyperparameters to find one that performs
well (see for example the varying learning rate, decay, momentum and max-norm of
the entries in Table 2). This adds to the training time. The accuracy of the adaptive
optimizer with its default settings is not much lower. Starting with that configuration
quickly provides a baseline for the tests and frees up time to experiment with other
hyperparameters (e.g. the number of hidden layers, batch size, etc.).

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study
of their imbact to deeb learnina Multimedia Tools and Apblications doi:10 1007/<s11042-019-



Batch Normalization

For CNNss, the empirical study showed that:

— Adding batch normalization improved accuracy without other observable side effects.
Since it can be added without major structural changes to the network architecture,
adding batch normalization should be one of the first steps taken to optimize a CNN.

— Increasing the learning rate, as recommended in the batch normalization paper [7]
improves accuracy by 2% to 3%. Because this is a simple step to take, it should be done
in the initial optimization steps, before investing time in more complex optimizations.

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study
of their imbact to deeb learnina Multimedia Tools and Apblications doi:10 1007/<s11042-019-
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