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ML: Supervised & Unsupervised

MACHINE LEARNING

SUPERVISED LEARNING UNSUPERVISED LEARNING
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...

CLASSIFICATION REGRESSION
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ML: Workflow Supervised

Training
• Architecture definition

• Data augmentation

• Batch size

• Epochs

Evaluate the Model
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ML: Support Vector Machines - SVM

SVMs are based on the idea of finding a hyperplane that best divides a dataset
into two classes.

The goal is to choose a hyperplane
with the greatest possible margin 
between the hyperplane and any 

point within the training set, giving a 
greater chance of new data being 

classified correctly.



SVMs are based on the idea of finding a hyperplane that best divides a dataset
into two classes.

ML: Support Vector Machines - SVM



SVM – MARFE Classification

ML: Support Vector Machines – SVM (MARFE)
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SVM 
Module

• LibSVM (in C++)

Kernel type: polynomial

Evaluation test for different degree: 6, 8, 10 and 12.
(11018 SVM models were evaluated)
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ML: Workflow unSupervised

Training
• Architecture definition

• Data augmentation

• Batch size

• Epochs
Evaluate the Model

• Do we understand the pattern that 

emerged?

• Are we looking to the data that 

represents the problem?

Trained Model

Unclassified
data
• Real Data

Preprocessing
• Data engineering

• Meaningful variables

• Data Cleaning

• Balancing
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ML: K-Means (Unsupervised)

• K-Means partition the space into K classes. 

• Each point belongs to the cluster with the nearest mean

• Here “nearest” is based on some norm (e.g. Euclidean norm)

4 Classes

Feature space



AttriTex
Kmeans with Automatic Contour ROI

Input Image

ROI Automatic Contour 

3 Clusters Image

▪ INPUT Image: F4728H (1665 DCM Images) = 1132x1094 
▪Expected mean porosity by Porosimeter: 8.5%
▪ROI – Automatic Contour
▪Kmeans with 3 Clusters
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Search, Classification 

and Modelling



The Search ….



Strong Lensing Applications
• (Dark) Matter distribution in inner cluster regions

• Gravitational telescopes  to investigate faint galaxies at high redshift

• Einsten General Relativity Tests

• Cosmological probe



The Challenge:

Classify 100k images using up to four channels (VIS,  NISP J, Y and H – Euclid-
like). 

To test the algorithm we have 100k simulated images which contains all sorts of 
problems in the imaging system.

There was no information on how the images were simulated.

Each team developed different algorithms, mostly based in Deep Learning.

Strong Lensing Challenge 2.0
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Challenge 1.0 paper : Metcalf et al. 

2019    arXiv:1802.03609
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EfficientNet Model 

The optimization process is performed by an AutoML algorithm (MNAS).
The method search for performance with low complexity.

Based on compound scaling method is to perform a grid search to find the relationship between different 
scaling dimensions of the baseline network under a FLOPS constraint.
This determines the appropriate scaling coefficient for each of the dimensions mentioned above. 



17

EfficientNet Model 

The optimization process is performed by an AutoML algorithm (MNAS).
The method search for performance with low complexity.

Based on compound scaling method is to perform a grid search to find the relationship between different 
scaling dimensions of the baseline network under a FLOPS constraint.
This determines the appropriate scaling coefficient for each of the dimensions mentioned above. 
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Metcalf et al. 

2018

arXiv:1802.03609

The Bronze 

medal
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Metcalf et al. 
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Automatic Fractures and Breakouts detection with Deep Learning

Dias et al. 2020



The Classification ….



Galaxy Morphology Classification

The data was later matched with Galaxy zoo database.

We combined all morphological types and subtypes in 2 major classes Elliptical and
Spiral.

In DR1 we have ~8k have galaxy zoo classification (from the 14k in our original 
sample)



Some GalaxyZoo examples in S-Plus

Spirals



Some GalaxyZoo examples in S-Plus

Ellipticals



ID

True

E = 1

S = 0
predictions

E,S

Samples Predictions:

E < 0.5 and S < 0.5

Low probability of Elliptical AND Spiral



Blazars SED classification

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly 
towards an observer. Its standard identification is a manual procedure, usually depends 
upon heterogeneous multiwavelength coverage.

Artist’s impression



Lithology Classification in pre-salt

27

We proposed a Deep Learning architecture to make a fast 

and reliable analysis from the Ultrasound and Resistivity 

images that can be validated by the geologist.

Blanco-Valentin et al. 2019



Lithology Classification in pre-salt

28Valentim et al. 2019
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